diff --git a/examples/frameworks/xgboost/xgboost_metrics.py b/examples/frameworks/xgboost/xgboost_metrics.py index 73d1d02b..83448613 100644 --- a/examples/frameworks/xgboost/xgboost_metrics.py +++ b/examples/frameworks/xgboost/xgboost_metrics.py @@ -1,24 +1,27 @@ import xgboost as xgb -from sklearn.datasets import load_boston +from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from clearml import Task -task = Task.init(project_name='examples', task_name='xgboost metric auto reporting') +task = Task.init(project_name="examples", task_name="xgboost metric auto reporting") -X, y = load_boston(return_X_y=True) -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100) +X, y = load_iris(return_X_y=True) +X_train, X_test, y_train, y_test = train_test_split( + X, y, test_size=0.2, random_state=100 +) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) -params = { - 'objective': 'reg:squarederror', - 'eval_metric': 'rmse' -} +params = {"objective": "reg:squarederror", "eval_metric": "rmse"} bst = xgb.train( - params, dtrain, num_boost_round=100, - evals=[(dtrain, 'train'), (dtest, 'test')], - verbose_eval=0 + params, + dtrain, + num_boost_round=100, + evals=[(dtrain, "train"), (dtest, "test")], + verbose_eval=0, ) + +bst.save_model("best_model")