Documentation examples

This commit is contained in:
allegroai 2020-12-24 00:30:32 +02:00
parent 7edc998824
commit a29a655a6e
50 changed files with 223 additions and 37 deletions

View File

@ -2,7 +2,8 @@ from random import sample
from clearml import Task from clearml import Task
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Random Hyper-Parameter Search Example', task_type=Task.TaskTypes.optimizer) task = Task.init(project_name='examples', task_name='Random Hyper-Parameter Search Example', task_type=Task.TaskTypes.optimizer)
# Create a hyper-parameter dictionary for the task # Create a hyper-parameter dictionary for the task

View File

@ -5,6 +5,8 @@ from tensorflow import keras
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="autokeras", task_name="autokeras imdb example with scalars") task = Task.init(project_name="autokeras", task_name="autokeras imdb example with scalars")

View File

@ -6,6 +6,8 @@ from fastai.vision import * # Quick access to computer vision functionality
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="example", task_name="fastai with tensorboard callback") task = Task.init(project_name="example", task_name="fastai with tensorboard callback")
path = untar_data(URLs.MNIST_SAMPLE) path = untar_data(URLs.MNIST_SAMPLE)

View File

@ -17,7 +17,8 @@ from tqdm import tqdm
from clearml import Task, StorageManager from clearml import Task, StorageManager
# ClearML Initializations # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='Image Example', task_name='image classification CIFAR10') task = Task.init(project_name='Image Example', task_name='image classification CIFAR10')
params = {'number_of_epochs': 20, 'batch_size': 64, 'dropout': 0.25, 'base_lr': 0.001, 'momentum': 0.9, 'loss_report': 100} params = {'number_of_epochs': 20, 'batch_size': 64, 'dropout': 0.25, 'base_lr': 0.001, 'momentum': 0.9, 'loss_report': 100}
params = task.connect(params) # enabling configuration override by clearml params = task.connect(params) # enabling configuration override by clearml

View File

@ -89,7 +89,8 @@ model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(), optimizer=RMSprop(),
metrics=['accuracy']) metrics=['accuracy'])
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Keras with TensorBoard example') task = Task.init(project_name='examples', task_name='Keras with TensorBoard example')
# To set your own configuration: # To set your own configuration:

View File

@ -88,7 +88,8 @@ model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(), optimizer=RMSprop(),
metrics=['accuracy']) metrics=['accuracy'])
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Keras with TensorBoard example') task = Task.init(project_name='examples', task_name='Keras with TensorBoard example')
task.connect_configuration({'test': 1337, 'nested': {'key': 'value', 'number': 1}}) task.connect_configuration({'test': 1337, 'nested': {'key': 'value', 'number': 1}})

View File

@ -7,7 +7,8 @@ from keras import Input, layers, Model
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Model configuration and upload') task = Task.init(project_name='examples', task_name='Model configuration and upload')

View File

@ -43,6 +43,8 @@ def build_model(hp):
return model return model
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init('examples', 'kerastuner cifar10 tuning') task = Task.init('examples', 'kerastuner cifar10 tuning')
tuner = kt.Hyperband( tuner = kt.Hyperband(

View File

@ -6,6 +6,8 @@ from sklearn.metrics import mean_squared_error
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="LIGHTgbm") task = Task.init(project_name="examples", task_name="LIGHTgbm")
print('Loading data...') print('Loading data...')

View File

@ -5,7 +5,8 @@ import matplotlib.pyplot as plt
import seaborn as sns import seaborn as sns
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Matplotlib example') task = Task.init(project_name='examples', task_name='Matplotlib example')
# Create a plot # Create a plot

View File

@ -0,0 +1,95 @@
from argparse import ArgumentParser
import torch
import pytorch_lightning as pl
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from clearml import Task
from torchvision.datasets.mnist import MNIST
from torchvision import transforms
class LitClassifier(pl.LightningModule):
def __init__(self, hidden_dim=128, learning_rate=1e-3):
super().__init__()
self.save_hyperparameters()
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = torch.relu(self.l1(x))
x = torch.relu(self.l2(x))
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log('valid_loss', loss)
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log('test_loss', loss)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--hidden_dim', type=int, default=128)
parser.add_argument('--learning_rate', type=float, default=0.0001)
return parser
if __name__ == '__main__':
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="pytorch lightning mnist example")
pl.seed_everything(0)
parser = ArgumentParser()
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--epochs', default=3, type=int)
parser = pl.Trainer.add_argparse_args(parser)
parser = LitClassifier.add_model_specific_args(parser)
args = parser.parse_args()
# ------------
# data
# ------------
dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor())
mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor())
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
train_loader = DataLoader(mnist_train, batch_size=args.batch_size)
val_loader = DataLoader(mnist_val, batch_size=args.batch_size)
test_loader = DataLoader(mnist_test, batch_size=args.batch_size)
# ------------
# model
# ------------
model = LitClassifier(args.hidden_dim, args.learning_rate)
# ------------
# training
# ------------
trainer = pl.Trainer.from_argparse_args(args)
trainer.max_epochs = args.epochs
trainer.fit(model, train_loader, val_loader)
# ------------
# testing
# ------------
trainer.test(test_dataloaders=test_loader)

View File

@ -0,0 +1,4 @@
clearml
pytorch_lightning ~= 1.1.2
torch
torchvision

View File

@ -6,7 +6,8 @@ from tempfile import gettempdir
import torch import torch
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Model configuration and upload') task = Task.init(project_name='examples', task_name='Model configuration and upload')
# create a model # create a model

View File

@ -62,7 +62,8 @@ import torchvision.models as models
import copy import copy
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pytorch with matplotlib example', task_type=Task.TaskTypes.testing) task = Task.init(project_name='examples', task_name='pytorch with matplotlib example', task_type=Task.TaskTypes.testing)

View File

@ -74,6 +74,8 @@ def test(args, model, device, test_loader, epoch):
def main(): def main():
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pytorch mnist train') task = Task.init(project_name='examples', task_name='pytorch mnist train')
# Training settings # Training settings

View File

@ -99,7 +99,11 @@ def main():
parser.add_argument('--log-interval', type=int, default=10, metavar='N', parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status') help='how many batches to wait before logging training status')
args = parser.parse_args() args = parser.parse_args()
Task.init(project_name='examples', task_name='pytorch with tensorboard')
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pytorch with tensorboard') # noqa: F841
writer = SummaryWriter('runs') writer = SummaryWriter('runs')
writer.add_text('TEXT', 'This is some text', 0) writer.add_text('TEXT', 'This is some text', 0)
args.cuda = not args.no_cuda and torch.cuda.is_available() args.cuda = not args.no_cuda and torch.cuda.is_available()

View File

@ -6,9 +6,12 @@ from PIL import Image
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
from clearml import Task from clearml import Task
task = Task.init(project_name='examples', task_name='pytorch tensorboard toy example')
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pytorch tensorboard toy example')
writer = SummaryWriter(log_dir=os.path.join(gettempdir(), 'tensorboard_logs')) writer = SummaryWriter(log_dir=os.path.join(gettempdir(), 'tensorboard_logs'))
# convert to 4d [batch, col, row, RGB-channels] # convert to 4d [batch, col, row, RGB-channels]

View File

@ -9,9 +9,11 @@ from sklearn.model_selection import train_test_split
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="scikit-learn joblib example") task = Task.init(project_name="examples", task_name="scikit-learn joblib example")
iris = datasets.load_iris() iris = datasets.load_iris()

View File

@ -124,6 +124,8 @@ def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n
return plt return plt
# Connecting ClearML with the current process,
# from here on everything is logged automatically
Task.init('examples', 'scikit-learn matplotlib example') Task.init('examples', 'scikit-learn matplotlib example')
fig, fig_axes = plt.subplots(1, 3, figsize=(30, 10)) fig, fig_axes = plt.subplots(1, 3, figsize=(30, 10))

View File

@ -100,7 +100,10 @@ def main():
args = parser.parse_args() args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available() args.cuda = not args.no_cuda and torch.cuda.is_available()
task = Task.init(project_name='examples', task_name='pytorch with tensorboardX') # noqa: F841 # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pytorch with tensorboardX')
writer = SummaryWriter('runs') writer = SummaryWriter('runs')
writer.add_text('TEXT', 'This is some text', 0) writer.add_text('TEXT', 'This is some text', 0)

View File

@ -39,6 +39,9 @@ import tensorflow as tf
from tensorboard.plugins.pr_curve import summary from tensorboard.plugins.pr_curve import summary
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='tensorboard pr_curve') task = Task.init(project_name='examples', task_name='tensorboard pr_curve')
tf.compat.v1.disable_v2_behavior() tf.compat.v1.disable_v2_behavior()

View File

@ -8,9 +8,12 @@ import numpy as np
from PIL import Image from PIL import Image
from clearml import Task from clearml import Task
task = Task.init(project_name='examples', task_name='tensorboard toy example')
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='tensorboard toy example')
k = tf.placeholder(tf.float32) k = tf.placeholder(tf.float32)
# Make a normal distribution, with a shifting mean # Make a normal distribution, with a shifting mean

View File

@ -32,11 +32,13 @@ from tensorflow.examples.tutorials.mnist import input_data
from clearml import Task from clearml import Task
tf.compat.v1.enable_eager_execution() tf.compat.v1.enable_eager_execution()
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Tensorflow eager mode') task = Task.init(project_name='examples', task_name='Tensorflow eager mode')
FLAGS = tf.app.flags.FLAGS FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('data_num', 100, """Flag of type integer""") tf.app.flags.DEFINE_integer('data_num', 100, """Flag of type integer""")
tf.app.flags.DEFINE_string('img_path', './img', """Flag of type string""") tf.app.flags.DEFINE_string('img_path', './img', """Flag of type string""")

View File

@ -34,6 +34,9 @@ from tensorflow.examples.tutorials.mnist import input_data
from clearml import Task from clearml import Task
FLAGS = None FLAGS = None
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Tensorflow mnist with summaries example') task = Task.init(project_name='examples', task_name='Tensorflow mnist with summaries example')

View File

@ -6,6 +6,9 @@ import tempfile
import tensorflow as tf import tensorflow as tf
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Model configuration and upload') task = Task.init(project_name='examples', task_name='Model configuration and upload')
model = tf.Module() model = tf.Module()

View File

@ -39,6 +39,8 @@ from tensorboard.plugins.pr_curve import summary
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='tensorboard pr_curve') task = Task.init(project_name='examples', task_name='tensorboard pr_curve')
tf.compat.v1.disable_v2_behavior() tf.compat.v1.disable_v2_behavior()

View File

@ -11,8 +11,9 @@ from tensorflow.keras import Model
from clearml import Task from clearml import Task
task = Task.init(project_name='examples', # Connecting ClearML with the current process,
task_name='Tensorflow v2 mnist with summaries') # from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Tensorflow v2 mnist with summaries')
# Load and prepare the MNIST dataset. # Load and prepare the MNIST dataset.

View File

@ -7,7 +7,11 @@ from xgboost import plot_tree
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='XGBoost simple example') task = Task.init(project_name='examples', task_name='XGBoost simple example')
iris = datasets.load_iris() iris = datasets.load_iris()
X = iris.data X = iris.data
y = iris.target y = iris.target
@ -56,5 +60,6 @@ labels = dtest.get_label()
# plot results # plot results
xgb.plot_importance(model) xgb.plot_importance(model)
plt.show()
plot_tree(model) plot_tree(model)
plt.show() plt.show()

View File

@ -20,7 +20,8 @@ from tensorflow.keras.optimizers import RMSprop
from clearml import Task, Logger from clearml import Task, Logger
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Keras HP optimization base') task = Task.init(project_name='examples', task_name='Keras HP optimization base')

View File

@ -40,7 +40,8 @@ def job_complete_callback(
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value)) print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='Hyper-Parameter Optimization', task = Task.init(project_name='Hyper-Parameter Optimization',
task_name='Automatic Hyper-Parameter Optimization', task_name='Automatic Hyper-Parameter Optimization',
task_type=Task.TaskTypes.optimizer, task_type=Task.TaskTypes.optimizer,
@ -73,11 +74,10 @@ an_optimizer = HyperParameterOptimizer(
UniformIntegerParameterRange('General/layer_2', min_value=128, max_value=512, step_size=128), UniformIntegerParameterRange('General/layer_2', min_value=128, max_value=512, step_size=128),
DiscreteParameterRange('General/batch_size', values=[96, 128, 160]), DiscreteParameterRange('General/batch_size', values=[96, 128, 160]),
DiscreteParameterRange('General/epochs', values=[30]), DiscreteParameterRange('General/epochs', values=[30]),
DiscreteParameterRange('General/optimizer', values=['adam', 'sgd']),
], ],
# this is the objective metric we want to maximize/minimize # this is the objective metric we want to maximize/minimize
objective_metric_title='accuracy', objective_metric_title='epoch_accuracy',
objective_metric_series='accuracy', objective_metric_series='epoch_accuracy',
# now we decide if we want to maximize it or minimize it (accuracy we maximize) # now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign='max', objective_metric_sign='max',
# let us limit the number of concurrent experiments, # let us limit the number of concurrent experiments,

View File

@ -2,6 +2,8 @@ from clearml import Task
from clearml.automation.controller import PipelineController from clearml.automation.controller import PipelineController
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='pipeline demo', task = Task.init(project_name='examples', task_name='pipeline demo',
task_type=Task.TaskTypes.controller, reuse_last_task_id=False) task_type=Task.TaskTypes.controller, reuse_last_task_id=False)

View File

@ -3,7 +3,8 @@ from clearml import Task, StorageManager
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="pipeline step 2 process dataset") task = Task.init(project_name="examples", task_name="pipeline step 2 process dataset")
# program arguments # program arguments

View File

@ -5,7 +5,9 @@ from sklearn.linear_model import LogisticRegression
from clearml import Task from clearml import Task
# Connecting ClearML
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="pipeline step 3 train model") task = Task.init(project_name="examples", task_name="pipeline step 3 train model")
# Arguments # Arguments

View File

@ -39,7 +39,8 @@ def report_plots(logger, iteration=0):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="3D plot reporting") task = Task.init(project_name="examples", task_name="3D plot reporting")
print('reporting 3D plot graphs') print('reporting 3D plot graphs')

View File

@ -6,7 +6,10 @@ import numpy as np
from PIL import Image from PIL import Image
from clearml import Task from clearml import Task
task = Task.init('examples', 'artifacts example')
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='artifacts example')
df = pd.DataFrame( df = pd.DataFrame(
{ {

View File

@ -217,7 +217,8 @@ def report_html_image(logger, iteration=0):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="html samples reporting") task = Task.init(project_name="examples", task_name="html samples reporting")
print('reporting html files into debug samples section') print('reporting html files into debug samples section')

View File

@ -19,6 +19,8 @@ FLAGS = flags.FLAGS
flags.DEFINE_string('echo', None, 'Text to echo.') flags.DEFINE_string('echo', None, 'Text to echo.')
flags.DEFINE_string('another_str', 'My string', 'A string', module_name='test') flags.DEFINE_string('another_str', 'My string', 'A string', module_name='test')
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='hyper-parameters example') task = Task.init(project_name='examples', task_name='hyper-parameters example')
flags.DEFINE_integer('echo3', 3, 'Text to echo.') flags.DEFINE_integer('echo3', 3, 'Text to echo.')
@ -32,8 +34,7 @@ parameters = {
'float': 2.2, 'float': 2.2,
'string': 'my string', 'string': 'my string',
} }
from clearml import Task parameters = task.connect(parameters)
parameters = Task.current_task().connect(parameters, name='more_stuff_deep_inside_code')
# adding new parameter after connect (will be logged as well) # adding new parameter after connect (will be logged as well)
parameters['new_param'] = 'this is new' parameters['new_param'] = 'this is new'

View File

@ -43,7 +43,8 @@ def report_debug_images(logger, iteration=0):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="image reporting") task = Task.init(project_name="examples", task_name="image reporting")
print('reporting a few debug images') print('reporting a few debug images')

View File

@ -4,6 +4,8 @@ import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from clearml import Task from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
# Create a new task, disable automatic matplotlib connect # Create a new task, disable automatic matplotlib connect
task = Task.init( task = Task.init(
project_name='examples', project_name='examples',

View File

@ -4,6 +4,8 @@ import os
from clearml import Task, Logger from clearml import Task, Logger
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="audio and video reporting") task = Task.init(project_name="examples", task_name="audio and video reporting")
print('reporting audio and video samples to the debug samples section') print('reporting audio and video samples to the debug samples section')

View File

@ -5,6 +5,8 @@ import os
from clearml import Task, OutputModel from clearml import Task, OutputModel
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Model configuration example') task = Task.init(project_name='examples', task_name='Model configuration example')
# Connect a local configuration file # Connect a local configuration file

View File

@ -43,7 +43,8 @@ def report_table(logger, iteration=0):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="table reporting") task = Task.init(project_name="examples", task_name="table reporting")
print('reporting pandas tables and python lists as tables into the plots section') print('reporting pandas tables and python lists as tables into the plots section')

View File

@ -4,6 +4,8 @@ from clearml import Task
import plotly.express as px import plotly.express as px
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init('examples', 'plotly reporting') task = Task.init('examples', 'plotly reporting')
print('reporting plotly figures') print('reporting plotly figures')

View File

@ -21,7 +21,8 @@ def report_scalars(logger):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="scalar reporting") task = Task.init(project_name="examples", task_name="scalar reporting")
print('reporting scalar graphs') print('reporting scalar graphs')

View File

@ -109,7 +109,8 @@ def report_plots(logger, iteration=0):
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="2D plots reporting") task = Task.init(project_name="examples", task_name="2D plots reporting")
print('reporting some graphs') print('reporting some graphs')
@ -117,7 +118,6 @@ def main():
# Get the task logger, # Get the task logger,
# You can also call Task.current_task().get_logger() from anywhere in your code. # You can also call Task.current_task().get_logger() from anywhere in your code.
logger = task.get_logger() logger = task.get_logger()
#logger.report_scatter2d()
# report graphs # report graphs
report_plots(logger) report_plots(logger)

View File

@ -58,7 +58,8 @@ Vestibulum dictum ipsum at viverra ultrices. Aliquam sed ante massa. Quisque con
def main(): def main():
# Create the experiment Task # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="text reporting") task = Task.init(project_name="examples", task_name="text reporting")
print("reporting text logs") print("reporting text logs")

View File

@ -76,6 +76,8 @@ def main():
) )
return return
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="DevOps", task_name="AWS Auto-Scaler", task_type=Task.TaskTypes.service) task = Task.init(project_name="DevOps", task_name="AWS Auto-Scaler", task_type=Task.TaskTypes.service)
task.connect(hyper_params) task.connect(hyper_params)
task.connect_configuration(configurations) task.connect_configuration(configurations)

View File

@ -24,7 +24,8 @@ from clearml.backend_api.session.client import APIClient
from clearml import Task from clearml import Task
# Connecting ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init( task = Task.init(
project_name="DevOps", project_name="DevOps",
task_name="Cleanup Service", task_name="Cleanup Service",

View File

@ -12,9 +12,13 @@ import jupyter # noqa
from clearml import Task from clearml import Task
# initialize ClearML # Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init( task = Task.init(
project_name="DevOps", task_name="Allocate Jupyter Notebook Instance", task_type=Task.TaskTypes.service) project_name="DevOps",
task_name="Allocate Jupyter Notebook Instance",
task_type=Task.TaskTypes.service
)
# get rid of all the runtime ClearML # get rid of all the runtime ClearML
preserve = ( preserve = (

View File

@ -192,6 +192,8 @@ def main():
slack_monitor.status_alerts += ["completed"] slack_monitor.status_alerts += ["completed"]
# start the monitoring Task # start the monitoring Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='Monitoring', task_name='Slack Alerts', task_type=Task.TaskTypes.monitor) task = Task.init(project_name='Monitoring', task_name='Slack Alerts', task_type=Task.TaskTypes.monitor)
if not args.local: if not args.local:
task.execute_remotely(queue_name=args.service_queue) task.execute_remotely(queue_name=args.service_queue)