diff --git a/clearml/automation/optimization.py b/clearml/automation/optimization.py index 75f14628..080142fe 100644 --- a/clearml/automation/optimization.py +++ b/clearml/automation/optimization.py @@ -610,7 +610,7 @@ class SearchStrategy(object): :param int top_k: The number of Tasks (experiments) to return. :param all_metrics: Default False, only return the objective metric on the metrics dictionary. If True, return all scalar metrics of the experiment - :param all_hyper_parameters: Default False. If True, return all the hyper-parameters from all the sections. + :param all_hyper_parameters: Default False. If True, return all the hyperparameters from all the sections. :param only_completed: return only completed Tasks. Default False. :return: A list of dictionaries ({task_id: '', hyper_parameters: {}, metrics: {}}), ordered by performance, @@ -791,7 +791,7 @@ class SearchStrategy(object): def _validate_base_task(self): # type: () -> () """ - Check the base task exists and contains the requested Objective metric and hyper parameters. + Check the base task exists and contains the requested Objective metric and hyperparameters. """ # check if the task exists try: @@ -929,7 +929,7 @@ class SearchStrategy(object): class GridSearch(SearchStrategy): """ - Grid search strategy controller. Full grid sampling of every hyper-parameter combination. + Grid search strategy controller. Full grid sampling of every hyperparameter combination. """ def __init__( @@ -1001,7 +1001,7 @@ class GridSearch(SearchStrategy): class RandomSearch(SearchStrategy): """ - Random search strategy controller. Random uniform sampling of hyper-parameters. + Random search strategy controller. Random uniform sampling of hyperparameters. """ # Number of already chosen random samples before assuming we covered the entire hyper-parameter space @@ -1105,7 +1105,7 @@ class HyperParameterOptimizer(object): ): # type: (...) -> () """ - Create a new hyper-parameter controller. The newly created object will launch and monitor the new experiments. + Create a new hyperparameter controller. The newly created object will launch and monitor the new experiments. :param str base_task_id: The Task ID to be used as template experiment to optimize. :param list hyper_parameters: The list of Parameter objects to optimize over. @@ -1120,7 +1120,7 @@ class HyperParameterOptimizer(object): - ``min_global`` - Minimize the min value of *all* reported values for the specific title/series scalar. - ``max_global`` - Maximize the max value of *all* reported values for the specific title/series scalar. - :param class.SearchStrategy optimizer_class: The SearchStrategy optimizer to use for the hyper-parameter search + :param class.SearchStrategy optimizer_class: The SearchStrategy optimizer to use for the hyperparameter search :param int max_number_of_concurrent_tasks: The maximum number of concurrent Tasks (experiments) running at the same time. :param str execution_queue: The execution queue to use for launching Tasks (experiments). @@ -1516,7 +1516,7 @@ class HyperParameterOptimizer(object): :param int top_k: The number of Tasks (experiments) to return. :param all_metrics: Default False, only return the objective metric on the metrics dictionary. If True, return all scalar metrics of the experiment - :param all_hyper_parameters: Default False. If True, return all the hyper-parameters from all the sections. + :param all_hyper_parameters: Default False. If True, return all the hyperparameters from all the sections. :param only_completed: return only completed Tasks. Default False. :return: A list of dictionaries ({task_id: '', hyper_parameters: {}, metrics: {}}), ordered by performance, diff --git a/clearml/automation/parameters.py b/clearml/automation/parameters.py index a32cee74..d88b2cfc 100644 --- a/clearml/automation/parameters.py +++ b/clearml/automation/parameters.py @@ -15,7 +15,7 @@ class RandomSeed(object): def set_random_seed(seed=1337): # type: (int) -> () """ - Set global seed for all hyper-parameter strategy random number sampling. + Set global seed for all hyperparameter strategy random number sampling. :param int seed: The random seed. """ @@ -26,7 +26,7 @@ class RandomSeed(object): def get_random_seed(): # type: () -> int """ - Get the global seed for all hyper-parameter strategy random number sampling. + Get the global seed for all hyperparameter strategy random number sampling. :return: The random seed. """ diff --git a/clearml/model.py b/clearml/model.py index fa51b80a..7b9271c9 100644 --- a/clearml/model.py +++ b/clearml/model.py @@ -2160,7 +2160,7 @@ class OutputModel(BaseModel): # type: (str) -> None """ Set the URI of the storage destination for uploaded model weight files. - Supported storage destinations include S3, Google Cloud Storage), and file locations. + Supported storage destinations include S3, Google Cloud Storage, and file locations. Using this method, file uploads are separate and then a link to each is stored in the model object. diff --git a/docs/logger.md b/docs/logger.md index 58842593..7c346020 100644 --- a/docs/logger.md +++ b/docs/logger.md @@ -819,7 +819,7 @@ def report_surface(self, title, series, matrix, iteration, xlabels=None, ylabels ### Images Use to report an image and upload its contents to the bucket specified in the **ClearML** configuration file, -or a [a default upload destination](#set-default-upload-destination), if you set a default. +or a [default upload destination](#set-default-upload-destination), if you set a default. First [get the current logger](#get-the-current-logger) and then use it (see an [example script](https://github.com/allegroai/clearml/blob/master/examples/manual_reporting.py)) with the following method. @@ -931,7 +931,7 @@ def report_image(self, title, series, iteration, local_path=None, matrix=None, m In order for **ClearML** to log a dictionary of parameters, use the `Task.connect` method. -For example, to log the hyper-parameters learning_rate, batch_size, display_step, model_path, n_hidden_1, and n_hidden_2: +For example, to log the hyperparameters learning_rate, batch_size, display_step, model_path, n_hidden_1, and n_hidden_2: ```python # Create a dictionary of parameters diff --git a/examples/frameworks/pytorch-lightning/pytorch_lightning_example.py b/examples/frameworks/pytorch-lightning/pytorch_lightning_example.py index 337d829e..7c85a9e2 100644 --- a/examples/frameworks/pytorch-lightning/pytorch_lightning_example.py +++ b/examples/frameworks/pytorch-lightning/pytorch_lightning_example.py @@ -65,7 +65,7 @@ if __name__ == '__main__': parser = LitClassifier.add_model_specific_args(parser) args = parser.parse_args() - Task.init(project_name="examples-internal", task_name="lightning checkpoint issue and argparser") + Task.init(project_name="examples", task_name="pytorch lightning MNIST") # ------------ # data