mirror of
				https://github.com/clearml/clearml
				synced 2025-06-26 18:16:07 +00:00 
			
		
		
		
	write TB summaries and saves trained model
This commit is contained in:
		
							parent
							
								
									225685cede
								
							
						
					
					
						commit
						93274ad173
					
				
							
								
								
									
										226
									
								
								tensorflow_mnist_with_summaries
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										226
									
								
								tensorflow_mnist_with_summaries
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,226 @@ | ||||
| # Copyright 2015 The TensorFlow Authors. All Rights Reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the 'License'); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #         http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an 'AS IS' BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================== | ||||
| """A simple MNIST classifier which displays summaries in TensorBoard. | ||||
| 
 | ||||
| This is an unimpressive MNIST model, but it is a good example of using | ||||
| tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of | ||||
| naming summary tags so that they are grouped meaningfully in TensorBoard. | ||||
| 
 | ||||
| It demonstrates the functionality of every TensorBoard dashboard. | ||||
| """ | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
| 
 | ||||
| import argparse | ||||
| import os | ||||
| import sys | ||||
| 
 | ||||
| import tensorflow as tf | ||||
| 
 | ||||
| from tensorflow.examples.tutorials.mnist import input_data | ||||
| from trains import Task | ||||
| 
 | ||||
| FLAGS = None | ||||
| task = Task.init(project_name='examples', task_name='Tensorflow mnist with summaries example') | ||||
| 
 | ||||
| 
 | ||||
| def train(): | ||||
|     # Import data | ||||
|     mnist = input_data.read_data_sets(FLAGS.data_dir, | ||||
|                                                                         fake_data=FLAGS.fake_data) | ||||
| 
 | ||||
|     sess = tf.InteractiveSession() | ||||
|     # Create a multilayer model. | ||||
| 
 | ||||
|     # Input placeholders | ||||
|     with tf.name_scope('input'): | ||||
|         x = tf.placeholder(tf.float32, [None, 784], name='x-input') | ||||
|         y_ = tf.placeholder(tf.int64, [None], name='y-input') | ||||
| 
 | ||||
|     with tf.name_scope('input_reshape'): | ||||
|         image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) | ||||
|         tf.summary.image('input', image_shaped_input, 10) | ||||
| 
 | ||||
|     # We can't initialize these variables to 0 - the network will get stuck. | ||||
|     def weight_variable(shape): | ||||
|         """Create a weight variable with appropriate initialization.""" | ||||
|         initial = tf.truncated_normal(shape, stddev=0.1) | ||||
|         return tf.Variable(initial) | ||||
| 
 | ||||
|     def bias_variable(shape): | ||||
|         """Create a bias variable with appropriate initialization.""" | ||||
|         initial = tf.constant(0.1, shape=shape) | ||||
|         return tf.Variable(initial) | ||||
| 
 | ||||
|     def variable_summaries(var): | ||||
|         """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" | ||||
|         with tf.name_scope('summaries'): | ||||
|             mean = tf.reduce_mean(var) | ||||
|             tf.summary.scalar('mean', mean) | ||||
|             with tf.name_scope('stddev'): | ||||
|                 stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) | ||||
|             tf.summary.scalar('stddev', stddev) | ||||
|             tf.summary.scalar('max', tf.reduce_max(var)) | ||||
|             tf.summary.scalar('min', tf.reduce_min(var)) | ||||
|             tf.summary.histogram('histogram', var) | ||||
| 
 | ||||
|     def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): | ||||
|         """Reusable code for making a simple neural net layer. | ||||
| 
 | ||||
|         It does a matrix multiply, bias add, and then uses ReLU to nonlinearize. | ||||
|         It also sets up name scoping so that the resultant graph is easy to read, | ||||
|         and adds a number of summary ops. | ||||
|         """ | ||||
|         # Adding a name scope ensures logical grouping of the layers in the graph. | ||||
|         with tf.name_scope(layer_name): | ||||
|             # This Variable will hold the state of the weights for the layer | ||||
|             with tf.name_scope('weights'): | ||||
|                 weights = weight_variable([input_dim, output_dim]) | ||||
|                 variable_summaries(weights) | ||||
|             with tf.name_scope('biases'): | ||||
|                 biases = bias_variable([output_dim]) | ||||
|                 variable_summaries(biases) | ||||
|             with tf.name_scope('Wx_plus_b'): | ||||
|                 preactivate = tf.matmul(input_tensor, weights) + biases | ||||
|                 tf.summary.histogram('pre_activations', preactivate) | ||||
|             activations = act(preactivate, name='activation') | ||||
|             tf.summary.histogram('activations', activations) | ||||
|             return activations | ||||
| 
 | ||||
|     hidden1 = nn_layer(x, 784, 500, 'layer1') | ||||
| 
 | ||||
|     with tf.name_scope('dropout'): | ||||
|         keep_prob = tf.placeholder(tf.float32) | ||||
|         tf.summary.scalar('dropout_keep_probability', keep_prob) | ||||
|         dropped = tf.nn.dropout(hidden1, keep_prob) | ||||
| 
 | ||||
|     # Do not apply softmax activation yet, see below. | ||||
|     y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity) | ||||
| 
 | ||||
|     with tf.name_scope('cross_entropy'): | ||||
|         # The raw formulation of cross-entropy, | ||||
|         # | ||||
|         # tf.reduce_mean(-tf.reduce_sum(y_ * tf.math.log(tf.softmax(y)), | ||||
|         #                                                             reduction_indices=[1])) | ||||
|         # | ||||
|         # can be numerically unstable. | ||||
|         # | ||||
|         # So here we use tf.compat.v1.losses.sparse_softmax_cross_entropy on the | ||||
|         # raw logit outputs of the nn_layer above, and then average across | ||||
|         # the batch. | ||||
|         with tf.name_scope('total'): | ||||
|             cross_entropy = tf.losses.sparse_softmax_cross_entropy( | ||||
|                     labels=y_, logits=y) | ||||
|     tf.summary.scalar('cross_entropy', cross_entropy) | ||||
| 
 | ||||
|     with tf.name_scope('train'): | ||||
|         train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( | ||||
|                 cross_entropy) | ||||
| 
 | ||||
|     with tf.name_scope('accuracy'): | ||||
|         with tf.name_scope('correct_prediction'): | ||||
|             correct_prediction = tf.equal(tf.argmax(y, 1), y_) | ||||
|         with tf.name_scope('accuracy'): | ||||
|             accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | ||||
|     tf.summary.scalar('accuracy', accuracy) | ||||
| 
 | ||||
|     # Merge all the summaries and write them out to | ||||
|     # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default) | ||||
|     merged = tf.summary.merge_all() | ||||
|     train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) | ||||
|     test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test') | ||||
|      | ||||
|     tf.global_variables_initializer().run() | ||||
| 
 | ||||
|     # Train the model, and also write summaries. | ||||
|     # Every 10th step, measure test-set accuracy, and write test summaries | ||||
|     # All other steps, run train_step on training data, & add training summaries | ||||
| 
 | ||||
|     def feed_dict(train): | ||||
|         """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" | ||||
|         if train or FLAGS.fake_data: | ||||
|             xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) | ||||
|             k = FLAGS.dropout | ||||
|         else: | ||||
|             xs, ys = mnist.test.images, mnist.test.labels | ||||
|             k = 1.0 | ||||
|         return {x: xs, y_: ys, keep_prob: k} | ||||
| 
 | ||||
|     saver = tf.train.Saver() | ||||
|     for i in range(FLAGS.max_steps): | ||||
|         if i % 10 == 0:    # Record summaries and test-set accuracy | ||||
|             summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False)) | ||||
|             test_writer.add_summary(summary, i) | ||||
|             print('Accuracy at step %s: %s' % (i, acc)) | ||||
|         else:    # Record train set summaries, and train | ||||
|             if i % 100 == 99:    # Record execution stats | ||||
|                 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) | ||||
|                 run_metadata = tf.RunMetadata() | ||||
|                 summary, _ = sess.run([merged, train_step], | ||||
|                                                             feed_dict=feed_dict(True), | ||||
|                                                             options=run_options, | ||||
|                                                             run_metadata=run_metadata) | ||||
|                 train_writer.add_run_metadata(run_metadata, 'step%03d' % i) | ||||
|                 train_writer.add_summary(summary, i) | ||||
|                 print('Adding run metadata for', i) | ||||
|             else:    # Record a summary | ||||
|                 summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) | ||||
|                 train_writer.add_summary(summary, i) | ||||
| 
 | ||||
|     save_path = saver.save(sess,FLAGS.save_path) | ||||
|     print("Model saved in path: %s" % save_path) | ||||
|     train_writer.close() | ||||
|     test_writer.close() | ||||
| 
 | ||||
| 
 | ||||
| def main(_): | ||||
|     if tf.gfile.Exists(FLAGS.log_dir): | ||||
|         tf.gfile.DeleteRecursively(FLAGS.log_dir) | ||||
|     tf.gfile.MakeDirs(FLAGS.log_dir) | ||||
|     with tf.Graph().as_default(): | ||||
|         train() | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     parser = argparse.ArgumentParser() | ||||
|     parser.add_argument('--fake_data', nargs='?', const=True, type=bool, | ||||
|                                             default=False, | ||||
|                                             help='If true, uses fake data for unit testing.') | ||||
|     parser.add_argument('--max_steps', type=int, default=1000, | ||||
|                                             help='Number of steps to run trainer.') | ||||
|     parser.add_argument('--learning_rate', type=float, default=0.001, | ||||
|                                             help='Initial learning rate') | ||||
|     parser.add_argument('--dropout', type=float, default=0.9, | ||||
|                                             help='Keep probability for training dropout.') | ||||
|     parser.add_argument( | ||||
|             '--data_dir', | ||||
|             type=str, | ||||
|             default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), | ||||
|                                                      'tensorflow/mnist/input_data'), | ||||
|             help='Directory for storing input data') | ||||
|     parser.add_argument( | ||||
|             '--log_dir', | ||||
|             type=str, | ||||
|             default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), | ||||
|                                                      'tensorflow/mnist/logs/mnist_with_summaries'), | ||||
|             help='Summaries log directory') | ||||
|     parser.add_argument( | ||||
|         '--save_path', | ||||
|         default="/tmp/model.ckpt", | ||||
|         help='Save the trained model under this path' | ||||
|     ) | ||||
|     FLAGS, unparsed = parser.parse_known_args() | ||||
|     tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user