mirror of
https://github.com/clearml/clearml
synced 2025-04-02 00:26:05 +00:00
Update examples
This commit is contained in:
parent
04b3fa809b
commit
912264bfa7
@ -7,11 +7,13 @@
|
||||
"id": "wFJPLbY7w7Vj"
|
||||
},
|
||||
"source": [
|
||||
"# Allegro Trains Keras with Tensorboard example\n",
|
||||
"# Allegro Trains Keras with TensorBoard example\n",
|
||||
"\n",
|
||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/frameworks/keras/Allegro_Trains_keras_TB_example.ipynb)\n",
|
||||
"\n",
|
||||
"This tutorial introduce Trains with Keras and Tensorboard functionality. automatic logging model and Tensorboard outputs. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks).\n"
|
||||
"This example introduces Trains with Keras and TensorBoard functionality, including automatic logging, models, and TensorBoard outputs. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks).\n",
|
||||
"\n",
|
||||
"Note: This example is based on the Keras `mnist_mlp.py` example.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -36,9 +38,9 @@
|
||||
},
|
||||
"source": [
|
||||
"### Create a new task.\n",
|
||||
"Task object should be provided `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). A link to the newly generated task will be printed and the task will be updated real time in the Trains demo server.\n",
|
||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
||||
"\n",
|
||||
"You can read about task in the docs [here](https://allegro.ai/docs/task.html)"
|
||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -64,16 +66,6 @@
|
||||
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Keras with TensorBoard example\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "GPLPiHQ1ygTg"
|
||||
},
|
||||
"source": [
|
||||
"*Based on https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@ -231,9 +223,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.4"
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
}
|
||||
|
@ -1,67 +1,59 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"name": "Allegro Trains matplotlib example.ipynb",
|
||||
"provenance": [],
|
||||
"collapsed_sections": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
}
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "NKas2cYws8F6",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "NKas2cYws8F6"
|
||||
},
|
||||
"source": [
|
||||
"# Allegro Trains matplotlib example\n",
|
||||
"\n",
|
||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/frameworks/matplotlib/Allegro_Trains_matplotlib_example.ipynb)\n",
|
||||
"\n",
|
||||
"This tutorial introduce Trains with matplotlib functionality. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks)."
|
||||
"This example introduces Trains with matplotlib functionality. It also shows seaborn functionality. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks).\n",
|
||||
"\n",
|
||||
"Note: This example is based on the Trains [matplotlib_example.py](https://github.com/allegroai/trains/blob/master/examples/frameworks/matplotlib/matplotlib_example.py) example."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "72lCj7MJmRkQ",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "72lCj7MJmRkQ"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install trains\n",
|
||||
"!pip install numpy\n",
|
||||
"!pip install seaborn"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "b8jtq0iSt3-U",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "b8jtq0iSt3-U"
|
||||
},
|
||||
"source": [
|
||||
"### Create a new task.\n",
|
||||
"Task object should be provided `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). A link to the newly generated task will be printed and the task will be updated real time in the Trains demo server.\n",
|
||||
"## Create a new task.\n",
|
||||
"\n",
|
||||
"You can read about task in the docs [here](https://allegro.ai/docs/task.html)"
|
||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
||||
"\n",
|
||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "ses67ulJkGPq",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "ses67ulJkGPq"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
@ -71,39 +63,29 @@
|
||||
"\n",
|
||||
"# Start a new task\n",
|
||||
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Matplotlib example\")\n"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "whxX3Xjmy1PI",
|
||||
"colab_type": "text"
|
||||
},
|
||||
"source": [
|
||||
"This example was generated based on [trains matplotlib example](https://github.com/allegroai/trains/blob/master/examples/frameworks/matplotlib/matplotlib_example.py)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "T2l-0WvJt_yo",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "T2l-0WvJt_yo"
|
||||
},
|
||||
"source": [
|
||||
"### Matplotlib support\n",
|
||||
"## Matplotlib support\n",
|
||||
"\n",
|
||||
"Matplotlib plots are automatically logged. Data available in the task 'Results' section\n"
|
||||
"Trains automatically logs Matplotlib plots. They appear in the Web UI Results tab.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "a-nOyg9xlxiR",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "a-nOyg9xlxiR"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create plot\n",
|
||||
"N = 50\n",
|
||||
@ -113,77 +95,77 @@
|
||||
"area = (30 * np.random.rand(N))**2 # 0 to 15 point radii\n",
|
||||
"plt.scatter(x, y, s=area, c=colors, alpha=0.5)\n",
|
||||
"plt.show()\n"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "iV4BtqRFmi0N",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "iV4BtqRFmi0N"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create another plot - with a name\n",
|
||||
"x = np.linspace(0, 10, 30)\n",
|
||||
"y = np.sin(x)\n",
|
||||
"plt.plot(x, y, 'o', color='black')\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "yKT5UjDk6DGB",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "yKT5UjDk6DGB"
|
||||
},
|
||||
"source": [
|
||||
"Notice imshow will cause the plot images to apear as Images in the debug sample section"
|
||||
"By calling the `imshow` method, Trains automatically reports plot images in Results tab."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "IVzUScalmio-",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "IVzUScalmio-"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create unitlted image plot\n",
|
||||
"m = np.eye(256, 256, dtype=np.uint8)\n",
|
||||
"plt.imshow(m)\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "mioKlXpimib1",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "mioKlXpimib1"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create image plot - with a name\n",
|
||||
"m = np.eye(256, 256, dtype=np.uint8)\n",
|
||||
"plt.imshow(m)\n",
|
||||
"plt.title('Image Title')\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "AE7Gbm3GfvvK",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "AE7Gbm3GfvvK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create plot with savefig\n",
|
||||
"N = 10\n",
|
||||
@ -194,27 +176,27 @@
|
||||
"plt.title('savefig Image')\n",
|
||||
"plt.scatter(x, y, s=area, c=colors, alpha=0.5)\n",
|
||||
"plt.savefig(\"plot.png\")"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "jcRWq9Xc56fX",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "jcRWq9Xc56fX"
|
||||
},
|
||||
"source": [
|
||||
"Seaborn example:"
|
||||
"## Seaborn support"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "j-usk2d_mqS4",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "j-usk2d_mqS4"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sns.set(style=\"darkgrid\")\n",
|
||||
"# Load an example dataset with long-form data\n",
|
||||
@ -224,9 +206,33 @@
|
||||
" hue=\"region\", style=\"event\",\n",
|
||||
" data=fmri)\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"name": "Allegro Trains matplotlib example.ipynb",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
@ -1,83 +1,61 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"colab": {
|
||||
"name": "Allegro Trains logging example.ipynb",
|
||||
"provenance": [],
|
||||
"collapsed_sections": []
|
||||
}
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "RZiRah3QiR_G",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "RZiRah3QiR_G"
|
||||
},
|
||||
"source": [
|
||||
"# Allegro Trains logging example\n",
|
||||
"\n",
|
||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/reporting/Allegro_Trains_logging_example.ipynb)\n",
|
||||
"\n",
|
||||
"This tutorial introduce [Trains](https://github.com/allegroai/trains) logger functionality. You can find more reporting examples [here](https://github.com/allegroai/trains/tree/master/examples/reporting)."
|
||||
"This example introduces Trains [Logger](https://allegro.ai/docs/logger.html) functionality. Logger is the Trains console log and metric interface.\n",
|
||||
"\n",
|
||||
"You can find more reporting examples [here](https://github.com/allegroai/trains/tree/master/examples/reporting)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "RbESVEV0jl3c",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "RbESVEV0jl3c"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install trains\n",
|
||||
"!pip install numpy"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "8p9tkR5wue2x",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "8p9tkR5wue2x"
|
||||
},
|
||||
"source": [
|
||||
"### Create a new task\n",
|
||||
"Create a new task and get the logger object for this task.\n",
|
||||
"### Create a new Task\n",
|
||||
"Create a new Task and get a Logger object for the Task.\n",
|
||||
"\n",
|
||||
"Task object should be provided `project_name` (the project name for the experiment) and `task_name` (the name of the experiment).\n",
|
||||
"A link to the newly generated task will be printed and the task will be updated real time in the Trains demo server.\n",
|
||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
||||
"\n",
|
||||
"Logger is the Trains console log and metric interface.\n",
|
||||
"You can read about the logger in the [docs](https://allegro.ai/docs/logger.html)\n"
|
||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html).\n",
|
||||
"\n",
|
||||
"After the Task is created, get a Logger for it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "885DHN5SjsHy",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "885DHN5SjsHy"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
@ -89,29 +67,28 @@
|
||||
"# Get the task logger,\n",
|
||||
"# You can also call Task.current_task().get_logger() from anywhere in your code.\n",
|
||||
"logger = task.get_logger()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "SADmtLH8uwhw",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "SADmtLH8uwhw"
|
||||
},
|
||||
"source": [
|
||||
"### Explicit scalar logging\n",
|
||||
"Explicit scalar logging. Data available in the task 'Results' section.\n",
|
||||
"For more [usage examples](https://allegro.ai/docs/logger.html#trains.logger.Logger.report_scalar)"
|
||||
"Use the [Logger.report_scalar](https://allegro.ai/docs/logger.html#trains.logger.Logger.report_scalar) method to explicitly log scalars. Scalar plots appear in the Web UI, Results > Scalars tab."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "E6YH4lNLjLs8",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "E6YH4lNLjLs8"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# report two scalar series on the same graph\n",
|
||||
"for i in range(10):\n",
|
||||
@ -122,30 +99,31 @@
|
||||
"for i in range(10):\n",
|
||||
" logger.report_scalar(\"graph A\", \"series A\", iteration=i, value=1./(i+1))\n",
|
||||
" logger.report_scalar(\"graph B\", \"series B\", iteration=i, value=10./(i+1))"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "8iqvizEzwRtk",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "8iqvizEzwRtk"
|
||||
},
|
||||
"source": [
|
||||
"### Explicit histogram logging\n",
|
||||
"Explicit histogram logging. Data available in the task 'Results' section.\n",
|
||||
"You can report histograms, matrix, 3D scatter diagrams and surface.\n",
|
||||
"For more examples check [here](https://allegro.ai/docs/logger.html#trains.logger.Logger.report_histogram)\n"
|
||||
"### Explicit logging of other data\n",
|
||||
"\n",
|
||||
"You can log other data and report the data in a variety of plot types, including histograms, confusion matrices, 2D and 3D scatter diagrams, and surface diagrams. They appear in the Results > Plots tab.\n",
|
||||
"\n",
|
||||
"For information about the methods to report each type of plot, see the [Logger](https://allegro.ai/docs/logger.html) module.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "_rWW7HTYjLtK",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "_rWW7HTYjLtK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"iteration = 100\n",
|
||||
"\n",
|
||||
@ -228,34 +206,40 @@
|
||||
" yaxis=\"title y\",\n",
|
||||
" zaxis=\"title z\",\n",
|
||||
")"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "OZqPEaFRwcVY",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "OZqPEaFRwcVY"
|
||||
},
|
||||
"source": [
|
||||
"### Explicit debug samples reporting\n",
|
||||
"Explicit debug samples reporting. Data available in the task 'Results' section\n",
|
||||
"\n",
|
||||
"We are using StorageManager to download a local copy of the files. \n",
|
||||
"You can use the StorageManager immediately, you only need to provide the url. \n",
|
||||
"Cache is enabled by default for all downloaded remote urls/files.\n",
|
||||
"Explicitly report debug samples, including images, audio, and video."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Downloading the files\n",
|
||||
"\n",
|
||||
"For more information, you can read about the storage manager [here](https://allegro.ai/docs/storage.html#trains.storage.manager.StorageManager)\n"
|
||||
"We use StorageManager to download a local copy of the files. You can use it immediately. Just provide the URL. Cache is enabled by default for all downloaded remote URLs/files.\n",
|
||||
"\n",
|
||||
"For more information, you can read about the storage manager [here](https://allegro.ai/docs/storage_manager_storagemanager.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "s4rf0ap0jLtb",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "s4rf0ap0jLtb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from trains.storage import StorageManager\n",
|
||||
"image_local_copy = StorageManager.get_local_copy(\n",
|
||||
@ -278,28 +262,29 @@
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Audio location: {}\".format(audio_local_copy))\n"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "vydmi7HWw0gS",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "vydmi7HWw0gS"
|
||||
},
|
||||
"source": [
|
||||
"### Report images and media\n",
|
||||
"Reporting the downloaded samples. Data available in the task 'Results' section.\n"
|
||||
"#### Report images and media\n",
|
||||
"\n",
|
||||
"Use [Logger.report_image](https://allegro.ai/docs/logger.html?highlight=report_image#trains.logger.Logger.report_image) and [Logger.report_media](https://allegro.ai/docs/logger.html?highlight=report_media#trains.logger.Logger.report_media) to report the downloaded samples. The debug samples appear in the Results > Debug Samples tab."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "MtEhbE4S_P66",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "MtEhbE4S_P66"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"logger.report_image(\"image\", \"image from url\", iteration=100, local_path=image_local_copy)\n",
|
||||
"\n",
|
||||
@ -321,62 +306,85 @@
|
||||
"\n",
|
||||
"# reporting html from url to debug samples section\n",
|
||||
"logger.report_media(\"html\", \"url_html\", iteration=1, url=\"https://allegro.ai/docs/index.html\")"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "uDrcRCJxxCQP",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "uDrcRCJxxCQP"
|
||||
},
|
||||
"source": [
|
||||
"### Explicit text logging\n",
|
||||
"Explicit text logging. Data available in the task 'Results' section.\n",
|
||||
"For more examples check [here](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.report_text)\n"
|
||||
"Use [Logger.report_text](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.report_text) to log text message. They appear in Results > Log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "a2UlIETAjLtk",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "a2UlIETAjLtk"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# report text\n",
|
||||
"logger.report_text(\"hello, this is plain text\")\n"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "aNFDbjZ7xNco",
|
||||
"colab_type": "text"
|
||||
"colab_type": "text",
|
||||
"id": "aNFDbjZ7xNco"
|
||||
},
|
||||
"source": [
|
||||
"### Flushing the reports\n",
|
||||
"If flush is not called, reports are flushed in the background every couple of seconds, \n",
|
||||
"and at the end of the process execution.\n",
|
||||
"\n",
|
||||
"More information can be found [here](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.flush)\n"
|
||||
"Reports are flushed in the background every couple of seconds, and at the end of the process execution.\n",
|
||||
"\n",
|
||||
"Or, flush the Logger by calling [Logger.flush](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.flush)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "SSyGUskJjLtr",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"colab": {}
|
||||
"id": "SSyGUskJjLtr"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"logger.flush()"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"name": "Allegro Trains logging example.ipynb",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user