mirror of
https://github.com/clearml/clearml
synced 2025-03-03 10:42:00 +00:00
Add using_artifacts_example (#334)
* add example for Task, multiple Tasks created in same code * fixes to clearml-task.md * add example of remote_execution * add using_artifacts_example * Rename remote_execution_example.py to execute_remotely_example.py * change name to execute_remotely_example.py * add header to using_artifacts_example.py * add newline to using_artifacts_example.py
This commit is contained in:
parent
3e61e3b39b
commit
8658198f8b
135
examples/advanced/execute_remotely_example.py
Normal file
135
examples/advanced/execute_remotely_example.py
Normal file
@ -0,0 +1,135 @@
|
||||
# ClearML - Example of remote_execution with Pytorch mnist training
|
||||
""" the task.remote_execution option is used when it's needed to run part of the code locally and then move it for
|
||||
full execution remotely. When running locally, the task.remote_execution() will complete the currently running task and
|
||||
enqueue it to a chosen queue. When running in an agent, it will ignore the task.remote_execution() and proceed to execute
|
||||
the code. This feature is especially helpful if you want to run the first epoch locally on your machine to debug and to
|
||||
make sure code doesn't crash, and then move to a stronger machine for the entire training.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import os
|
||||
from tempfile import gettempdir
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from torchvision import datasets, transforms
|
||||
from clearml import Task, Logger
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
||||
self.fc1 = nn.Linear(4 * 4 * 50, 500)
|
||||
self.fc2 = nn.Linear(500, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = x.view(-1, 4 * 4 * 50)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
def train(args, model, device, train_loader, optimizer, epoch):
|
||||
model.train()
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
data, target = data.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx % args.log_interval == 0:
|
||||
Logger.current_logger().report_scalar(
|
||||
"train", "loss", iteration=(epoch * len(train_loader) + batch_idx), value=loss.item())
|
||||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
||||
epoch, batch_idx * len(data), len(train_loader.dataset),
|
||||
100. * batch_idx / len(train_loader), loss.item()))
|
||||
|
||||
|
||||
def test(args, model, device, test_loader, epoch):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
output = model(data)
|
||||
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
|
||||
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
|
||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||
test_loss /= len(test_loader.dataset)
|
||||
Logger.current_logger().report_scalar(
|
||||
"test", "loss", iteration=epoch, value=test_loss)
|
||||
Logger.current_logger().report_scalar(
|
||||
"test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset)))
|
||||
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
||||
test_loss, correct, len(test_loader.dataset),
|
||||
100. * correct / len(test_loader.dataset)))
|
||||
|
||||
|
||||
def main():
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
task = Task.init(project_name='examples', task_name='remote_execution pytorch mnist train')
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
||||
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
||||
help='input batch size for training (default: 64)')
|
||||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
||||
help='input batch size for testing (default: 1000)')
|
||||
parser.add_argument('--epochs', type=int, default=10, metavar='N',
|
||||
help='number of epochs to train (default: 10)')
|
||||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
||||
help='learning rate (default: 0.01)')
|
||||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
||||
help='SGD momentum (default: 0.5)')
|
||||
parser.add_argument('--no-cuda', action='store_true', default=False,
|
||||
help='disables CUDA training')
|
||||
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
||||
help='random seed (default: 1)')
|
||||
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
||||
help='how many batches to wait before logging training status')
|
||||
parser.add_argument('--save-model', action='store_true', default=True,
|
||||
help='For Saving the current Model')
|
||||
args = parser.parse_args()
|
||||
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
||||
torch.manual_seed(args.seed)
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
kwargs = {'num_workers': 4, 'pin_memory': True} if use_cuda else {}
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST(os.path.join('..', 'data'), train=True, download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args.batch_size, shuffle=True, **kwargs)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST(os.path.join('..', 'data'), train=False, transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args.test_batch_size, shuffle=True, **kwargs)
|
||||
model = Net().to(device)
|
||||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
|
||||
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
if epoch > 1:
|
||||
# We run training for 1 epoch to make sure nothing crashes then local execution will be terminated.
|
||||
# Execution will switch to remote execution by the agent listening to specified queue
|
||||
task.execute_remotely(queue_name="default")
|
||||
train(args, model, device, train_loader, optimizer, epoch)
|
||||
test(args, model, device, test_loader, epoch)
|
||||
if (args.save_model):
|
||||
torch.save(model.state_dict(), os.path.join(gettempdir(), "mnist_cnn.pt"))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
30
examples/reporting/using_artifacts_example.py
Normal file
30
examples/reporting/using_artifacts_example.py
Normal file
@ -0,0 +1,30 @@
|
||||
# Using artifacts example
|
||||
"""
|
||||
Upload artifacts from a Task, and then a different Task can access and utilize the data from that artifact.
|
||||
"""
|
||||
from clearml import Task
|
||||
from time import sleep
|
||||
|
||||
|
||||
task1 = Task.init(project_name='examples', task_name='create artifact')
|
||||
# upload data file to the initialized task, inputting a name and file location
|
||||
task1.upload_artifact(name='data file', artifact_object='data_samples/sample.json')
|
||||
# close the task, to be able to initialize a new task
|
||||
task1.close()
|
||||
|
||||
# initialize another task to use some other task's artifacts
|
||||
task2 = Task.init(project_name='examples', task_name='use artifact from other task')
|
||||
# get instance of Task that created artifact (task1), using Task's project and name. You could also use its ID number.
|
||||
preprocess_task = Task.get_task(project_name='examples', task_name='create artifact')
|
||||
# access artifact from task1, using the artifact's name
|
||||
# get_local_copy() caches the files for later use and returns a path to the cached file
|
||||
local_json = preprocess_task.artifacts['data file'].get_local_copy()
|
||||
|
||||
# Doing some stuff with file from other Task in current Task
|
||||
with open(local_json) as data_file:
|
||||
file_text = data_file.read()
|
||||
|
||||
print(file_text)
|
||||
# Simulate the work of a Task
|
||||
sleep(1.0)
|
||||
print('Finished doing stuff with some data :)')
|
Loading…
Reference in New Issue
Block a user