Update docstrings

This commit is contained in:
allegroai
2020-06-11 21:15:40 +03:00
parent 570b8f19b3
commit 7173a16a16
25 changed files with 644 additions and 553 deletions

View File

@@ -6,7 +6,7 @@ from typing import Mapping, Any, Sequence, Optional, Union
class RandomSeed(object):
"""
Base class controlling random sampling for every optimization strategy
The base class controlling random sampling for every optimization strategy.
"""
_random = BaseRandom(1337)
_seed = 1337
@@ -15,9 +15,9 @@ class RandomSeed(object):
def set_random_seed(seed=1337):
# type: (int) -> ()
"""
Set global seed for all hyper parameter strategy random number sampling
Set global seed for all hyper-parameter strategy random number sampling.
:param int seed: random seed
:param int seed: The random seed.
"""
RandomSeed._seed = seed
RandomSeed._random = BaseRandom(seed)
@@ -26,16 +26,16 @@ class RandomSeed(object):
def get_random_seed():
# type: () -> int
"""
Get the global seed for all hyper parameter strategy random number sampling
Get the global seed for all hyper-parameter strategy random number sampling.
:return int: random seed
:return: The random seed.
"""
return RandomSeed._seed
class Parameter(RandomSeed):
"""
Base Hyper-Parameter optimization object
The base hyper-parameter optimization object.
"""
def __init__(self, name):
@@ -43,34 +43,41 @@ class Parameter(RandomSeed):
"""
Create a new Parameter for hyper-parameter optimization
:param str name: give a name to the parameter, this is the parameter name that will be passed to a Task
:param str name: The new Parameter name. This is the parameter name that will be passed to a Task.
"""
self.name = name
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return a dict with the Parameter name and a sampled value for the Parameter
Return a dict with the Parameter name and a sampled value for the Parameter.
:return:
For example:
.. code-block:: py
{'answer': 0.42}
:return dict: example, {'answer': 0.42}
"""
pass
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
Return a list of all the valid values of the Parameter.
:return list: list of dicts {name: value}
:return: List of dicts {name: value}
"""
pass
def to_dict(self):
# type: () -> Mapping[str, Union[str, Parameter]]
"""
Return a dict representation of the parameter object. Used for serialization of the Parameter object.
Return a dict representation of the Parameter object. Used for serialization of the Parameter object.
:return dict: dict representation of the object (serialization)
:return: dict representation of the object (serialization).
"""
serialize = {'__class__': str(self.__class__).split('.')[-1][:-2]}
# noinspection PyCallingNonCallable
@@ -81,9 +88,9 @@ class Parameter(RandomSeed):
def from_dict(cls, a_dict):
# type: (Mapping[str, str]) -> Parameter
"""
Construct parameter object from a dict representation (deserialize from dict)
Construct Parameter object from a dict representation (deserialize from dict).
:return Parameter: Parameter object
:return: The Parameter object.
"""
a_dict = a_dict.copy()
a_cls = a_dict.pop('__class__', None)
@@ -101,7 +108,7 @@ class Parameter(RandomSeed):
class UniformParameterRange(Parameter):
"""
Uniform randomly sampled Hyper-Parameter object
Uniform randomly sampled hyper-parameter object.
"""
def __init__(
@@ -116,11 +123,17 @@ class UniformParameterRange(Parameter):
"""
Create a parameter to be sampled by the SearchStrategy
:param str name: parameter name, should match task hyper-parameter name
:param float min_value: minimum sample to use for uniform random sampling
:param float max_value: maximum sample to use for uniform random sampling
:param float step_size: If not None, set step size (quantization) for value sampling
:param bool include_max_value: if True range includes the max_value (default True)
:param str name: The parameter name. Match the Task hyper-parameter name.
:param float min_value: The minimum sample to use for uniform random sampling.
:param float max_value: The maximum sample to use for uniform random sampling.
:param float step_size: If not ``None``, set step size (quantization) for value sampling.
:param bool include_max_value: Range includes the ``max_value``?
The values are:
- ``True`` - The range includes the ``max_value`` (Default)
- ``False`` - Does not include.
"""
super(UniformParameterRange, self).__init__(name=name)
self.min_value = float(min_value)
@@ -131,9 +144,9 @@ class UniformParameterRange(Parameter):
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value based on object sampling definitions
Return uniformly sampled value based on object sampling definitions.
:return dict: {self.name: random value [self.min_value, self.max_value)}
:return: {self.name: random value [self.min_value, self.max_value)}
"""
if not self.step_size:
return {self.name: self._random.uniform(self.min_value, self.max_value)}
@@ -143,9 +156,10 @@ class UniformParameterRange(Parameter):
def to_list(self):
# type: () -> Sequence[Mapping[str, float]]
"""
Return a list of all the valid values of the Parameter
if self.step_size is not defined, return 100 points between minmax values
:return list: list of dicts {name: float}
Return a list of all the valid values of the Parameter. If ``self.step_size`` is not defined, return 100 points
between min/max values.
:return: list of dicts {name: float}
"""
step_size = self.step_size or (self.max_value - self.min_value) / 100.
steps = (self.max_value - self.min_value) / self.step_size
@@ -157,19 +171,25 @@ class UniformParameterRange(Parameter):
class UniformIntegerParameterRange(Parameter):
"""
Uniform randomly sampled integer Hyper-Parameter object
Uniform randomly sampled integer Hyper-Parameter object.
"""
def __init__(self, name, min_value, max_value, step_size=1, include_max_value=True):
# type: (str, int, int, int, bool) -> ()
"""
Create a parameter to be sampled by the SearchStrategy
Create a parameter to be sampled by the SearchStrategy.
:param str name: The parameter name. Match the task hyper-parameter name.
:param int min_value: The minimum sample to use for uniform random sampling.
:param int max_value: The maximum sample to use for uniform random sampling.
:param int step_size: The default step size is ``1``.
:param bool include_max_value: Range includes the ``max_value``?
The values are:
- ``True`` - Includes the ``max_value`` (Default)
- ``False`` - Does not include.
:param str name: parameter name, should match task hyper-parameter name
:param int min_value: minimum sample to use for uniform random sampling
:param int max_value: maximum sample to use for uniform random sampling
:param int step_size: Default step size is 1
:param bool include_max_value: if True range includes the max_value (default True)
"""
super(UniformIntegerParameterRange, self).__init__(name=name)
self.min_value = int(min_value)
@@ -180,9 +200,9 @@ class UniformIntegerParameterRange(Parameter):
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value based on object sampling definitions
Return uniformly sampled value based on object sampling definitions.
:return dict: {self.name: random value [self.min_value, self.max_value)}
:return: {self.name: random value [self.min_value, self.max_value)}
"""
return {self.name: self._random.randrange(
start=self.min_value, step=self.step_size,
@@ -191,10 +211,10 @@ class UniformIntegerParameterRange(Parameter):
def to_list(self):
# type: () -> Sequence[Mapping[str, int]]
"""
Return a list of all the valid values of the Parameter
if self.step_size is not defined, return 100 points between minmax values
Return a list of all the valid values of the Parameter. If ``self.step_size`` is not defined, return 100 points
between minmax values.
:return list: list of dicts {name: int}
:return: list of dicts {name: int}
"""
values = list(range(self.min_value, self.max_value, self.step_size))
if self.include_max and (not values or values[-1] < self.max_value):
@@ -204,16 +224,16 @@ class UniformIntegerParameterRange(Parameter):
class DiscreteParameterRange(Parameter):
"""
Discrete randomly sampled Hyper-Parameter object
Discrete randomly sampled hyper-parameter object.
"""
def __init__(self, name, values=()):
# type: (str, Sequence[Any]) -> ()
"""
Uniformly sample values form a list of discrete options
Uniformly sample values form a list of discrete options.
:param str name: parameter name, should match task hyper-parameter name
:param list values: list/tuple of valid parameter values to sample from
:param str name: The parameter name. Match the task hyper-parameter name.
:param list values: The list/tuple of valid parameter values to sample from.
"""
super(DiscreteParameterRange, self).__init__(name=name)
self.values = values
@@ -221,39 +241,47 @@ class DiscreteParameterRange(Parameter):
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value from the valid list of values
Return uniformly sampled value from the valid list of values.
:return dict: {self.name: random entry from self.value}
:return: {self.name: random entry from self.value}
"""
return {self.name: self._random.choice(self.values)}
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
Return a list of all the valid values of the Parameter.
:return list: list of dicts {name: value}
:return: list of dicts {name: value}
"""
return [{self.name: v} for v in self.values]
class ParameterSet(Parameter):
"""
Discrete randomly sampled Hyper-Parameter object
Discrete randomly sampled Hyper-Parameter object.
"""
def __init__(self, parameter_combinations=()):
# type: (Sequence[Mapping[str, Union[float, int, str, Parameter]]]) -> ()
"""
Uniformly sample values form a list of discrete options (combinations) of parameters
Uniformly sample values form a list of discrete options (combinations) of parameters.
:param list parameter_combinations: list/tuple of valid parameter combinations,
Example: two combinations with three specific parameters per combination:
[ {'opt1': 10, 'arg2': 20, 'arg2': 30},
{'opt2': 11, 'arg2': 22, 'arg2': 33}, ]
Example: Two complex combination each one sampled from a different range
[ {'opt1': UniformParameterRange('arg1',0,1) , 'arg2': 20},
{'opt2': UniformParameterRange('arg1',11,12), 'arg2': 22},]
:param list parameter_combinations: The list/tuple of valid parameter combinations.
For example, two combinations with three specific parameters per combination:
.. code-block:: javascript
[ {'opt1': 10, 'arg2': 20, 'arg2': 30},
{'opt2': 11, 'arg2': 22, 'arg2': 33}, ]
Two complex combination each one sampled from a different range:
.. code-block:: javascript
[ {'opt1': UniformParameterRange('arg1',0,1) , 'arg2': 20},
{'opt2': UniformParameterRange('arg1',11,12), 'arg2': 22},]
"""
super(ParameterSet, self).__init__(name=None)
self.values = parameter_combinations
@@ -261,18 +289,18 @@ class ParameterSet(Parameter):
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value from the valid list of values
Return uniformly sampled value from the valid list of values.
:return dict: {self.name: random entry from self.value}
:return: {self.name: random entry from self.value}
"""
return self._get_value(self._random.choice(self.values))
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
Return a list of all the valid values of the Parameter.
:return list: list of dicts {name: value}
:return: list of dicts {name: value}
"""
combinations = []
for combination in self.values: