From 6ce0ebbb51c1ff5271b274f89df1d79bfa0461e4 Mon Sep 17 00:00:00 2001 From: allegroai <> Date: Thu, 22 Sep 2022 20:53:39 +0300 Subject: [PATCH] Unify scalar reporting examples --- examples/reporting/scalar_reporting.py | 12 ++++--- examples/reporting/single_scalar_reporting.py | 36 ------------------- 2 files changed, 8 insertions(+), 40 deletions(-) delete mode 100644 examples/reporting/single_scalar_reporting.py diff --git a/examples/reporting/scalar_reporting.py b/examples/reporting/scalar_reporting.py index 74aeedac..ba07df1d 100644 --- a/examples/reporting/scalar_reporting.py +++ b/examples/reporting/scalar_reporting.py @@ -11,13 +11,17 @@ def report_scalars(logger): """ # report two scalar series on the same graph for i in range(100): - logger.report_scalar(title="unified graph", series="series A", iteration=i, value=1./(i+1)) - logger.report_scalar(title="unified graph", series="series B", iteration=i, value=10./(i+1)) + logger.report_scalar(title="unified graph", series="series A", iteration=i, value=1. / (i + 1)) + logger.report_scalar(title="unified graph", series="series B", iteration=i, value=10. / (i + 1)) # report two scalar series on two different graphs for i in range(100): - logger.report_scalar(title="graph A", series="series A", iteration=i, value=1./(i+1)) - logger.report_scalar(title="graph B", series="series B", iteration=i, value=10./(i+1)) + logger.report_scalar(title="graph A", series="series A", iteration=i, value=1. / (i + 1)) + logger.report_scalar(title="graph B", series="series B", iteration=i, value=10. / (i + 1)) + + # report single scalars + logger.report_single_value(name="metric A", value=486) + logger.report_single_value(name="metric B", value=305.95) def main(): diff --git a/examples/reporting/single_scalar_reporting.py b/examples/reporting/single_scalar_reporting.py deleted file mode 100644 index c9556a2b..00000000 --- a/examples/reporting/single_scalar_reporting.py +++ /dev/null @@ -1,36 +0,0 @@ -# ClearML - Example of manual single value scalars reporting -# -from clearml import Task - - -def main(): - # Connecting ClearML with the current process, - # from here on everything is logged automatically - task = Task.init(project_name="examples", task_name="Scalar reporting (Single Value)") - - # Get the task logger, - # You can also call Task.current_task().get_logger() from anywhere in your code. - logger = task.get_logger() - - # report scalars - logger.report_single_value(name="metric_A", value=125) - logger.report_single_value(name="metric_B", value=305.95) - logger.report_single_value(name="metric_C", value=486) - - # force flush reports - # If flush is not called, reports are flushed in the background every couple of seconds, - # and at the end of the process execution - logger.flush(wait=True) - - # get scalars - # Getting one metric - metric_B = task.get_reported_single_value('metric_B') - print('metric_B is', metric_B) - - # Getting all metrics at once - metric_all = task.get_reported_single_values() - print('All metrics', metric_all) - - -if __name__ == "__main__": - main()