mirror of
https://github.com/clearml/clearml
synced 2025-03-03 10:42:00 +00:00
Add warning when calling Task.init() with deferred_init=True
Fix docstrings
This commit is contained in:
parent
bc67a64d2a
commit
6a8d610317
@ -872,7 +872,7 @@ class PipelineController(object):
|
||||
|
||||
The currently supported upload artifact types include:
|
||||
- string / Path - A path to artifact file. If a wildcard or a folder is specified, then ClearML
|
||||
creates and uploads a ZIP file.
|
||||
creates and uploads a ZIP file.
|
||||
- dict - ClearML stores a dictionary as ``.json`` file and uploads it.
|
||||
- pandas.DataFrame - ClearML stores a pandas.DataFrame as ``.csv.gz`` (compressed CSV) file and uploads it.
|
||||
- numpy.ndarray - ClearML stores a numpy.ndarray as ``.npz`` file and uploads it.
|
||||
|
@ -275,18 +275,19 @@ class Dataset(object):
|
||||
):
|
||||
# type: (...) -> ()
|
||||
"""
|
||||
Adds an external files or a folder to the current dataset.
|
||||
Adds an external file or a folder to the current dataset.
|
||||
External file links can be from cloud storage (s3://, gs://, azure://) or local / network storage (file://).
|
||||
Calculates file size for each file and compare against parent.
|
||||
Calculates file size for each file and compares against parent.
|
||||
|
||||
A few examples:
|
||||
# Adds file.jpg to the dataset. When retrieving a copy of the entire dataset (see dataset.get_local_copy())
|
||||
# this file will be located in "./my_dataset/new_folder/file.jpg"
|
||||
- Add file.jpg to the dataset. When retrieving a copy of the entire dataset (see dataset.get_local_copy()).
|
||||
This file will be located in "./my_dataset/new_folder/file.jpg".
|
||||
add_external_files(source_url="s3://my_bucket/stuff/file.jpg", target_dataset_folder="/my_dataset/new_folder/")
|
||||
# Adds all jpg files located in s3 bucket called "my_bucket" to the dataset.
|
||||
- Add all jpg files located in s3 bucket called "my_bucket" to the dataset.
|
||||
add_external_files(source_url="s3://my/bucket/", wildcard = "*.jpg",target_dataset_folder="/my_dataset/new_folder/")
|
||||
# Adds the entire content of "remote_folder" to the dataset.
|
||||
- Add the entire content of "remote_folder" to the dataset.
|
||||
add_external_files(source_url="s3://bucket/remote_folder/", target_dataset_folder="/my_dataset/new_folder/")
|
||||
# Adds the local file "/folder/local_file.jpg" to the dataset.
|
||||
- Add the local file "/folder/local_file.jpg" to the dataset.
|
||||
add_external_files(source_url="file:///folder/local_file.jpg", target_dataset_folder="/my_dataset/new_folder/")
|
||||
|
||||
:param source_url: Source url link to add to the dataset,
|
||||
@ -294,7 +295,7 @@ class Dataset(object):
|
||||
:param wildcard: add only specific set of files.
|
||||
Wildcard matching, can be a single string or a list of wildcards.
|
||||
:param dataset_path: The location in the dataset where the file will be downloaded into.
|
||||
E.g: for source_url='s3://bucket/remote_folder/image.jpg' and dataset_path='s3_files',
|
||||
e.g: for source_url='s3://bucket/remote_folder/image.jpg' and dataset_path='s3_files',
|
||||
'image.jpg' will be downloaded to 's3_files/image.jpg' (relative path to the dataset)
|
||||
:param recursive: If True match all wildcard files recursively
|
||||
:param verbose: If True print to console files added/modified
|
||||
|
@ -548,6 +548,8 @@ class Task(_Task):
|
||||
def completed_cb(x):
|
||||
Task.__main_task = x
|
||||
|
||||
getLogger().warning("ClearML initializing Task in the background")
|
||||
|
||||
task = FutureTaskCaller(
|
||||
func=cls.init,
|
||||
func_cb=completed_cb,
|
||||
|
Loading…
Reference in New Issue
Block a user