mirror of
https://github.com/clearml/clearml
synced 2025-05-03 12:31:00 +00:00
Remove old model upload examples
This commit is contained in:
parent
350a39b886
commit
652a29650a
@ -1,55 +0,0 @@
|
|||||||
# ClearML - Example of manual model configuration and uploading
|
|
||||||
#
|
|
||||||
import os
|
|
||||||
from tempfile import gettempdir
|
|
||||||
|
|
||||||
from tensorflow.keras import Input, layers, Model
|
|
||||||
|
|
||||||
from clearml import Task
|
|
||||||
|
|
||||||
# Connecting ClearML with the current process,
|
|
||||||
# from here on everything is logged automatically
|
|
||||||
task = Task.init(project_name='examples', task_name='Model configuration and upload')
|
|
||||||
|
|
||||||
|
|
||||||
def get_model():
|
|
||||||
# Create a simple model.
|
|
||||||
inputs = Input(shape=(32,))
|
|
||||||
outputs = layers.Dense(1)(inputs)
|
|
||||||
keras_model = Model(inputs, outputs)
|
|
||||||
keras_model.compile(optimizer='adam', loss='mean_squared_error')
|
|
||||||
return keras_model
|
|
||||||
|
|
||||||
|
|
||||||
# create a model
|
|
||||||
model = get_model()
|
|
||||||
|
|
||||||
# Connect a local configuration file
|
|
||||||
config_file = os.path.join('..', '..', 'reporting', 'data_samples', 'sample.json')
|
|
||||||
config_file = task.connect_configuration(config_file)
|
|
||||||
# then read configuration as usual, the backend will contain a copy of it.
|
|
||||||
# later when executing remotely, the returned `config_file` will be a temporary file
|
|
||||||
# containing a new copy of the configuration retrieved form the backend
|
|
||||||
# # model_config_dict = json.load(open(config_file, 'rt'))
|
|
||||||
|
|
||||||
# Or Store dictionary of definition for a specific network design
|
|
||||||
model_config_dict = {
|
|
||||||
'value': 13.37,
|
|
||||||
'dict': {'sub_value': 'string', 'sub_integer': 11},
|
|
||||||
'list_of_ints': [1, 2, 3, 4],
|
|
||||||
}
|
|
||||||
model_config_dict = task.connect_configuration(model_config_dict)
|
|
||||||
|
|
||||||
# We now update the dictionary after connecting it, and the changes will be tracked as well.
|
|
||||||
model_config_dict['new value'] = 10
|
|
||||||
model_config_dict['value'] *= model_config_dict['new value']
|
|
||||||
|
|
||||||
# store the label enumeration of the training model
|
|
||||||
labels = {'background': 0, 'cat': 1, 'dog': 2}
|
|
||||||
task.connect_label_enumeration(labels)
|
|
||||||
|
|
||||||
# storing the model, it will have the task network configuration and label enumeration
|
|
||||||
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')
|
|
||||||
|
|
||||||
model.save(os.path.join(gettempdir(), "model"))
|
|
||||||
print('Model saved')
|
|
@ -1,44 +0,0 @@
|
|||||||
# ClearML - Example of manual model configuration and uploading
|
|
||||||
#
|
|
||||||
import os
|
|
||||||
from tempfile import gettempdir
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from clearml import Task
|
|
||||||
|
|
||||||
# Connecting ClearML with the current process,
|
|
||||||
# from here on everything is logged automatically
|
|
||||||
task = Task.init(project_name='examples', task_name='Model configuration and upload')
|
|
||||||
|
|
||||||
# create a model
|
|
||||||
model = torch.nn.Module
|
|
||||||
|
|
||||||
# Connect a local configuration file
|
|
||||||
config_file = os.path.join('..', '..', 'reporting', 'data_samples', 'sample.json')
|
|
||||||
config_file = task.connect_configuration(config_file)
|
|
||||||
# then read configuration as usual, the backend will contain a copy of it.
|
|
||||||
# later when executing remotely, the returned `config_file` will be a temporary file
|
|
||||||
# containing a new copy of the configuration retrieved form the backend
|
|
||||||
# # model_config_dict = json.load(open(config_file, 'rt'))
|
|
||||||
|
|
||||||
# Or Store dictionary of definition for a specific network design
|
|
||||||
model_config_dict = {
|
|
||||||
'value': 13.37,
|
|
||||||
'dict': {'sub_value': 'string', 'sub_integer': 11},
|
|
||||||
'list_of_ints': [1, 2, 3, 4],
|
|
||||||
}
|
|
||||||
model_config_dict = task.connect_configuration(model_config_dict)
|
|
||||||
|
|
||||||
# We now update the dictionary after connecting it, and the changes will be tracked as well.
|
|
||||||
model_config_dict['new value'] = 10
|
|
||||||
model_config_dict['value'] *= model_config_dict['new value']
|
|
||||||
|
|
||||||
# store the label enumeration of the training model
|
|
||||||
labels = {'background': 0, 'cat': 1, 'dog': 2}
|
|
||||||
task.connect_label_enumeration(labels)
|
|
||||||
|
|
||||||
# storing the model, it will have the task network configuration and label enumeration
|
|
||||||
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')
|
|
||||||
|
|
||||||
torch.save(model, os.path.join(gettempdir(), "model.pt"))
|
|
||||||
print('Model saved')
|
|
@ -1,45 +0,0 @@
|
|||||||
# ClearML - Example of manual model configuration and uploading
|
|
||||||
#
|
|
||||||
import os
|
|
||||||
import tempfile
|
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
from clearml import Task
|
|
||||||
|
|
||||||
|
|
||||||
# Connecting ClearML with the current process,
|
|
||||||
# from here on everything is logged automatically
|
|
||||||
task = Task.init(project_name='examples', task_name='Model configuration and upload')
|
|
||||||
|
|
||||||
model = tf.Module()
|
|
||||||
|
|
||||||
# Connect a local configuration file
|
|
||||||
config_file = os.path.join('..', '..', 'reporting', 'data_samples', 'sample.json')
|
|
||||||
config_file = task.connect_configuration(config_file)
|
|
||||||
# then read configuration as usual, the backend will contain a copy of it.
|
|
||||||
# later when executing remotely, the returned `config_file` will be a temporary file
|
|
||||||
# containing a new copy of the configuration retrieved form the backend
|
|
||||||
# # model_config_dict = json.load(open(config_file, 'rt'))
|
|
||||||
|
|
||||||
# Or Store dictionary of definition for a specific network design
|
|
||||||
model_config_dict = {
|
|
||||||
'value': 13.37,
|
|
||||||
'dict': {'sub_value': 'string', 'sub_integer': 11},
|
|
||||||
'list_of_ints': [1, 2, 3, 4],
|
|
||||||
}
|
|
||||||
model_config_dict = task.connect_configuration(model_config_dict)
|
|
||||||
|
|
||||||
# We now update the dictionary after connecting it, and the changes will be tracked as well.
|
|
||||||
model_config_dict['new value'] = 10
|
|
||||||
model_config_dict['value'] *= model_config_dict['new value']
|
|
||||||
|
|
||||||
# store the label enumeration of the training model
|
|
||||||
labels = {'background': 0, 'cat': 1, 'dog': 2}
|
|
||||||
task.connect_label_enumeration(labels)
|
|
||||||
|
|
||||||
# storing the model, it will have the task network configuration and label enumeration
|
|
||||||
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')
|
|
||||||
|
|
||||||
tempdir = tempfile.mkdtemp()
|
|
||||||
tf.saved_model.save(model, os.path.join(tempdir, "model"))
|
|
||||||
print('Model saved')
|
|
Loading…
Reference in New Issue
Block a user