mirror of
https://github.com/clearml/clearml
synced 2025-03-03 10:42:00 +00:00
Moved hyper-parameter example optimization into optimization folder
This commit is contained in:
parent
562be23ba4
commit
53f46469ce
1
examples/services/hyper-parameter-optimization
Symbolic link
1
examples/services/hyper-parameter-optimization
Symbolic link
@ -0,0 +1 @@
|
||||
../optimization/hyper-parameter-optimization
|
@ -1,86 +0,0 @@
|
||||
# TRAINS - Keras with Tensorboard example code, automatic logging model and Tensorboard outputs
|
||||
#
|
||||
# Train a simple deep NN on the MNIST dataset.
|
||||
# Gets to 98.40% test accuracy after 20 epochs
|
||||
# (there is *a lot* of margin for parameter tuning).
|
||||
# 2 seconds per epoch on a K520 GPU.
|
||||
from __future__ import print_function
|
||||
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from keras.callbacks import TensorBoard, ModelCheckpoint
|
||||
from keras.datasets import mnist
|
||||
from keras.models import Sequential
|
||||
from keras.layers.core import Dense, Activation
|
||||
from keras.optimizers import RMSprop
|
||||
from keras.utils import np_utils
|
||||
import tensorflow as tf # noqa: F401
|
||||
|
||||
from trains import Task, Logger
|
||||
|
||||
|
||||
# Connecting TRAINS
|
||||
task = Task.init(project_name='examples', task_name='Keras HP optimization base')
|
||||
|
||||
|
||||
# the data, shuffled and split between train and test sets
|
||||
nb_classes = 10
|
||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||
|
||||
X_train = X_train.reshape(60000, 784).astype('float32')/255.
|
||||
X_test = X_test.reshape(10000, 784).astype('float32')/255.
|
||||
print(X_train.shape[0], 'train samples')
|
||||
print(X_test.shape[0], 'test samples')
|
||||
|
||||
# convert class vectors to binary class matrices
|
||||
Y_train = np_utils.to_categorical(y_train, nb_classes)
|
||||
Y_test = np_utils.to_categorical(y_test, nb_classes)
|
||||
|
||||
args = {'batch_size': 128,
|
||||
'epochs': 6,
|
||||
'layer_1': 512,
|
||||
'layer_2': 512,
|
||||
'layer_3': 10,
|
||||
'layer_4': 512,
|
||||
}
|
||||
args = task.connect(args)
|
||||
|
||||
model = Sequential()
|
||||
model.add(Dense(args['layer_1'], input_shape=(784,)))
|
||||
model.add(Activation('relu'))
|
||||
# model.add(Dropout(0.2))
|
||||
model.add(Dense(args['layer_2']))
|
||||
model.add(Activation('relu'))
|
||||
# model.add(Dropout(0.2))
|
||||
model.add(Dense(args['layer_3']))
|
||||
model.add(Activation('softmax'))
|
||||
|
||||
model2 = Sequential()
|
||||
model2.add(Dense(args['layer_4'], input_shape=(784,)))
|
||||
model2.add(Activation('relu'))
|
||||
|
||||
model.summary()
|
||||
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer=RMSprop(),
|
||||
metrics=['accuracy'])
|
||||
|
||||
# Advanced: setting model class enumeration
|
||||
labels = dict(('digit_%d' % i, i) for i in range(10))
|
||||
task.set_model_label_enumeration(labels)
|
||||
|
||||
output_folder = os.path.join(tempfile.gettempdir(), 'keras_example')
|
||||
|
||||
board = TensorBoard(log_dir=output_folder, write_images=False)
|
||||
model_store = ModelCheckpoint(filepath=os.path.join(output_folder, 'weight.hdf5'))
|
||||
|
||||
history = model.fit(X_train, Y_train,
|
||||
batch_size=args['batch_size'], epochs=args['epochs'],
|
||||
callbacks=[board, model_store],
|
||||
validation_data=(X_test, Y_test))
|
||||
score = model.evaluate(X_test, Y_test, verbose=0)
|
||||
print('Test score:', score[0])
|
||||
print('Test accuracy:', score[1])
|
||||
Logger.current_logger().report_scalar(title='evaluate', series='score', value=score[0], iteration=args['epochs'])
|
||||
Logger.current_logger().report_scalar(title='evaluate', series='accuracy', value=score[1], iteration=args['epochs'])
|
@ -1,114 +0,0 @@
|
||||
import logging
|
||||
|
||||
from trains import Task
|
||||
from trains.automation import DiscreteParameterRange, HyperParameterOptimizer, RandomSearch, \
|
||||
UniformIntegerParameterRange
|
||||
|
||||
try:
|
||||
from trains.automation.hpbandster import OptimizerBOHB
|
||||
Our_SearchStrategy = OptimizerBOHB
|
||||
except ValueError:
|
||||
logging.getLogger().warning(
|
||||
'Apologies, it seems you do not have \'hpbandster\' installed, '
|
||||
'we will be using RandomSearch strategy instead\n'
|
||||
'If you like to try ' '{{BOHB}: Robust and Efficient Hyperparameter Optimization at Scale},\n'
|
||||
'run: pip install hpbandster')
|
||||
Our_SearchStrategy = RandomSearch
|
||||
|
||||
|
||||
def job_complete_callback(
|
||||
job_id, # type: str
|
||||
objective_value, # type: float
|
||||
objective_iteration, # type: int
|
||||
job_parameters, # type: dict
|
||||
top_performance_job_id # type: str
|
||||
):
|
||||
print('Job completed!', job_id, objective_value, objective_iteration, job_parameters)
|
||||
if job_id == top_performance_job_id:
|
||||
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
|
||||
|
||||
|
||||
# Connecting TRAINS
|
||||
task = Task.init(project_name='Hyper-Parameter Optimization',
|
||||
task_name='Automatic Hyper-Parameter Optimization',
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False)
|
||||
|
||||
# experiment template to optimize in the hyper-parameter optimization
|
||||
args = {
|
||||
'template_task_id': None,
|
||||
'run_as_service': False,
|
||||
}
|
||||
args = task.connect(args)
|
||||
|
||||
# Get the template task experiment that we want to optimize
|
||||
if not args['template_task_id']:
|
||||
args['template_task_id'] = Task.get_task(
|
||||
project_name='examples', task_name='Keras HP optimization base').id
|
||||
|
||||
# Example use case:
|
||||
an_optimizer = HyperParameterOptimizer(
|
||||
# This is the experiment we want to optimize
|
||||
base_task_id=args['template_task_id'],
|
||||
# here we define the hyper-parameters to optimize
|
||||
hyper_parameters=[
|
||||
UniformIntegerParameterRange('layer_1', min_value=128, max_value=512, step_size=128),
|
||||
UniformIntegerParameterRange('layer_2', min_value=128, max_value=512, step_size=128),
|
||||
DiscreteParameterRange('batch_size', values=[96, 128, 160]),
|
||||
DiscreteParameterRange('epochs', values=[30]),
|
||||
],
|
||||
# this is the objective metric we want to maximize/minimize
|
||||
objective_metric_title='val_acc',
|
||||
objective_metric_series='val_acc',
|
||||
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
||||
objective_metric_sign='max',
|
||||
# let us limit the number of concurrent experiments,
|
||||
# this in turn will make sure we do dont bombard the scheduler with experiments.
|
||||
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
||||
max_number_of_concurrent_tasks=2,
|
||||
# this is the optimizer class (actually doing the optimization)
|
||||
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
||||
# more are coming soon...
|
||||
optimizer_class=Our_SearchStrategy,
|
||||
# Select an execution queue to schedule the experiments for execution
|
||||
execution_queue='moshik',
|
||||
# Optional: Limit the execution time of a single experiment, in minutes.
|
||||
# (this is optional, and if using OptimizerBOHB, it is ignored)
|
||||
time_limit_per_job=10.,
|
||||
# Check the experiments every 6 seconds is way too often, we should probably set it to 5 min,
|
||||
# assuming a single experiment is usually hours...
|
||||
pool_period_min=0.1,
|
||||
# set the maximum number of jobs to launch for the optimization, default (None) unlimited
|
||||
# If OptimizerBOHB is used, it defined the maximum budget in terms of full jobs
|
||||
# basically the cumulative number of iterations will not exceed total_max_jobs * max_iteration_per_job
|
||||
total_max_jobs=10,
|
||||
# This is only applicable for OptimizerBOHB and ignore by the rest
|
||||
# set the minimum number of iterations for an experiment, before early stopping
|
||||
min_iteration_per_job=10,
|
||||
# Set the maximum number of iterations for an experiment to execute
|
||||
# (This is optional, unless using OptimizerBOHB where this is a must)
|
||||
max_iteration_per_job=30,
|
||||
)
|
||||
|
||||
# if we are running as a service, just enqueue ourselves into the services queue and let it run the optimization
|
||||
if args['run_as_service']:
|
||||
# if this code is executed by `trains-agent` the function call does nothing.
|
||||
# if executed locally, the local process will be terminated, and a remote copy will be executed instead
|
||||
task.execute_remotely(queue_name='services', exit_process=True)
|
||||
|
||||
# report every 12 seconds, this is way too often, but we are testing here J
|
||||
an_optimizer.set_report_period(2.2)
|
||||
# start the optimization process, callback function to be called every time an experiment is completed
|
||||
# this function returns immediately
|
||||
an_optimizer.start(job_complete_callback=job_complete_callback)
|
||||
# set the time limit for the optimization process (2 hours)
|
||||
an_optimizer.set_time_limit(in_minutes=120.0)
|
||||
# wait until process is done (notice we are controlling the optimization process in the background)
|
||||
an_optimizer.wait()
|
||||
# optimization is completed, print the top performing experiments id
|
||||
top_exp = an_optimizer.get_top_experiments(top_k=3)
|
||||
print([t.id for t in top_exp])
|
||||
# make sure background optimization stopped
|
||||
an_optimizer.stop()
|
||||
|
||||
print('We are done, good bye')
|
@ -1,3 +0,0 @@
|
||||
keras
|
||||
tensorflow
|
||||
trains
|
Loading…
Reference in New Issue
Block a user