mirror of
https://github.com/clearml/clearml
synced 2025-03-03 10:42:00 +00:00
Update examples to ClearML
This commit is contained in:
parent
0bb590b5da
commit
4c8a24f1ff
@ -10,7 +10,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Trains - Example of integrating plots and training on jupyter notebook. \n",
|
"# ClearML - Example of integrating plots and training on jupyter notebook. \n",
|
||||||
"# In this example, simple graphs are shown, then an MNIST classifier is trained using Keras.\n",
|
"# In this example, simple graphs are shown, then an MNIST classifier is trained using Keras.\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
"import tempfile\n",
|
"import tempfile\n",
|
||||||
@ -35,14 +35,14 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"TRAINS Task: created new task id=2f9f2f08fa90427aa51e34b839e49fb6\n",
|
"ClearML Task: created new task id=2f9f2f08fa90427aa51e34b839e49fb6\n",
|
||||||
"TRAINS results page: https://demoapp.trains.allegro.ai/projects/0e152d03acf94ae4bb1f3787e293a9f5/experiments/2f9f2f08fa90427aa51e34b839e49fb6/output/log\n"
|
"ClearML results page: https://demoapp.clearml.allegro.ai/projects/0e152d03acf94ae4bb1f3787e293a9f5/experiments/2f9f2f08fa90427aa51e34b839e49fb6/output/log\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Connecting TRAINS\n",
|
"# Connecting ClearML\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"task = Task.init(project_name = 'examples', task_name = 'notebook example')\n"
|
"task = Task.init(project_name = 'examples', task_name = 'notebook example')\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -146,7 +146,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Notice, Updating task_params is traced and updated in TRAINS\n",
|
"# Notice, Updating task_params is traced and updated in ClearML\n",
|
||||||
"task_params['batch_size'] = 128\n",
|
"task_params['batch_size'] = 128\n",
|
||||||
"task_params['nb_classes'] = 10\n",
|
"task_params['nb_classes'] = 10\n",
|
||||||
"task_params['nb_epoch'] = 6\n",
|
"task_params['nb_epoch'] = 6\n",
|
||||||
|
@ -7,11 +7,11 @@
|
|||||||
"id": "wFJPLbY7w7Vj"
|
"id": "wFJPLbY7w7Vj"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"# Allegro Trains Keras with TensorBoard example\n",
|
"# Allegro ClearML Keras with TensorBoard example\n",
|
||||||
"\n",
|
"\n",
|
||||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/frameworks/keras/Allegro_Trains_keras_TB_example.ipynb)\n",
|
"[](https://colab.research.google.com/github/allegroai/clearml/blob/master/examples/frameworks/keras/Allegro_Trains_keras_TB_example.ipynb)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This example introduces Trains with Keras and TensorBoard functionality, including automatic logging, models, and TensorBoard outputs. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks).\n",
|
"This example introduces ClearML with Keras and TensorBoard functionality, including automatic logging, models, and TensorBoard outputs. You can find more frameworks examples [here](https://github.com/allegroai/clearml/tree/master/examples/frameworks).\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Note: This example is based on the Keras `mnist_mlp.py` example.\n"
|
"Note: This example is based on the Keras `mnist_mlp.py` example.\n"
|
||||||
]
|
]
|
||||||
@ -26,7 +26,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"!pip install trains\n",
|
"!pip install clearml\n",
|
||||||
"!pip install tensorflow>=2.0"
|
"!pip install tensorflow>=2.0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -38,7 +38,7 @@
|
|||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Create a new task.\n",
|
"### Create a new task.\n",
|
||||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the ClearML demo server.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
||||||
]
|
]
|
||||||
@ -60,7 +60,7 @@
|
|||||||
"import tensorflow as tf\n",
|
"import tensorflow as tf\n",
|
||||||
"from tensorflow import keras\n",
|
"from tensorflow import keras\n",
|
||||||
"from tensorflow.keras import utils as np_utils\n",
|
"from tensorflow.keras import utils as np_utils\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Start a new task\n",
|
"# Start a new task\n",
|
||||||
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Keras with TensorBoard example\")\n"
|
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Keras with TensorBoard example\")\n"
|
||||||
@ -205,7 +205,7 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"name": "Allegro Trains keras TB example.ipynb",
|
"name": "Allegro ClearML keras TB example.ipynb",
|
||||||
"provenance": []
|
"provenance": []
|
||||||
},
|
},
|
||||||
"kernelspec": {
|
"kernelspec": {
|
@ -18,7 +18,7 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Trains - Example of integrating plots and training on jupyter notebook. \n",
|
"# ClearML - Example of integrating plots and training on jupyter notebook. \n",
|
||||||
"# In this example, simple graphs are shown, then an MNIST classifier is trained using Keras.\n",
|
"# In this example, simple graphs are shown, then an MNIST classifier is trained using Keras.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from keras.callbacks import TensorBoard, ModelCheckpoint\n",
|
"from keras.callbacks import TensorBoard, ModelCheckpoint\n",
|
||||||
@ -41,14 +41,14 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"TRAINS Task: overwriting (reusing) task id=6de40029e54c41d7a1a24a1f2dc9cad2\n",
|
"ClearML Task: overwriting (reusing) task id=6de40029e54c41d7a1a24a1f2dc9cad2\n",
|
||||||
"TRAINS results page: https://demoapp.trains.allegro.ai/projects/087f765c846c4c76a7e9f3d035667d82/experiments/6de40029e54c41d7a1a24a1f2dc9cad2/output/log\n"
|
"ClearML results page: https://demoapp.clearml.allegro.ai/projects/087f765c846c4c76a7e9f3d035667d82/experiments/6de40029e54c41d7a1a24a1f2dc9cad2/output/log\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Connecting TRAINS\n",
|
"# Connecting ClearML\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"task = Task.init(project_name = 'examples', task_name = 'notebook example')\n"
|
"task = Task.init(project_name = 'examples', task_name = 'notebook example')\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -152,7 +152,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Notice, Updating task_params is traced and updated in TRAINS\n",
|
"# Notice, Updating task_params is traced and updated in ClearML\n",
|
||||||
"task_params['batch_size'] = 128\n",
|
"task_params['batch_size'] = 128\n",
|
||||||
"task_params['nb_classes'] = 10\n",
|
"task_params['nb_classes'] = 10\n",
|
||||||
"task_params['nb_epoch'] = 6\n",
|
"task_params['nb_epoch'] = 6\n",
|
||||||
|
@ -7,13 +7,13 @@
|
|||||||
"id": "NKas2cYws8F6"
|
"id": "NKas2cYws8F6"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"# Allegro Trains matplotlib example\n",
|
"# Allegro ClearML matplotlib example\n",
|
||||||
"\n",
|
"\n",
|
||||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/frameworks/matplotlib/Allegro_Trains_matplotlib_example.ipynb)\n",
|
"[](https://colab.research.google.com/github/allegroai/clearml/blob/master/examples/frameworks/matplotlib/Allegro_Trains_matplotlib_example.ipynb)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This example introduces Trains with matplotlib functionality. It also shows seaborn functionality. You can find more frameworks examples [here](https://github.com/allegroai/trains/tree/master/examples/frameworks).\n",
|
"This example introduces ClearML with matplotlib functionality. It also shows seaborn functionality. You can find more frameworks examples [here](https://github.com/allegroai/clearml/tree/master/examples/frameworks).\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Note: This example is based on the Trains [matplotlib_example.py](https://github.com/allegroai/trains/blob/master/examples/frameworks/matplotlib/matplotlib_example.py) example."
|
"Note: This example is based on the ClearML [matplotlib_example.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/matplotlib/matplotlib_example.py) example."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -26,7 +26,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"!pip install trains\n",
|
"!pip install clearml\n",
|
||||||
"!pip install numpy\n",
|
"!pip install numpy\n",
|
||||||
"!pip install seaborn"
|
"!pip install seaborn"
|
||||||
]
|
]
|
||||||
@ -40,7 +40,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## Create a new task.\n",
|
"## Create a new task.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the ClearML demo server.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html)."
|
||||||
]
|
]
|
||||||
@ -59,7 +59,7 @@
|
|||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import seaborn as sns\n",
|
"import seaborn as sns\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Start a new task\n",
|
"# Start a new task\n",
|
||||||
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Matplotlib example\")\n"
|
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Matplotlib example\")\n"
|
||||||
@ -74,7 +74,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## Matplotlib support\n",
|
"## Matplotlib support\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Trains automatically logs Matplotlib plots. They appear in the Web UI Results tab.\n"
|
"ClearML automatically logs Matplotlib plots. They appear in the Web UI Results tab.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -121,7 +121,7 @@
|
|||||||
"id": "yKT5UjDk6DGB"
|
"id": "yKT5UjDk6DGB"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"By calling the `imshow` method, Trains automatically reports plot images in Results tab."
|
"By calling the `imshow` method, ClearML automatically reports plot images in Results tab."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -212,7 +212,7 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"name": "Allegro Trains matplotlib example.ipynb",
|
"name": "Allegro ClearML matplotlib example.ipynb",
|
||||||
"provenance": []
|
"provenance": []
|
||||||
},
|
},
|
||||||
"kernelspec": {
|
"kernelspec": {
|
@ -15,7 +15,7 @@
|
|||||||
"! pip install -U torchaudio==0.5.1\n",
|
"! pip install -U torchaudio==0.5.1\n",
|
||||||
"! pip install -U torchvision==0.6.1\n",
|
"! pip install -U torchvision==0.6.1\n",
|
||||||
"! pip install -U matplotlib==3.2.1\n",
|
"! pip install -U matplotlib==3.2.1\n",
|
||||||
"! pip install -U trains>=0.16.1\n",
|
"! pip install -U clearml>=0.16.1\n",
|
||||||
"! pip install -U pandas==1.0.4\n",
|
"! pip install -U pandas==1.0.4\n",
|
||||||
"! pip install -U numpy==1.18.4\n",
|
"! pip install -U numpy==1.18.4\n",
|
||||||
"! pip install -U tensorboard==2.2.1"
|
"! pip install -U tensorboard==2.2.1"
|
||||||
@ -50,8 +50,8 @@
|
|||||||
"from torchvision.transforms import ToTensor\n",
|
"from torchvision.transforms import ToTensor\n",
|
||||||
"from torchvision import models\n",
|
"from torchvision import models\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"from trains.storage import StorageManager\n",
|
"from clearml.storage import StorageManager\n",
|
||||||
"\n",
|
"\n",
|
||||||
"%matplotlib inline"
|
"%matplotlib inline"
|
||||||
]
|
]
|
||||||
@ -65,7 +65,7 @@
|
|||||||
"task = Task.init(project_name='Audio Example', task_name='audio classification UrbanSound8K')\n",
|
"task = Task.init(project_name='Audio Example', task_name='audio classification UrbanSound8K')\n",
|
||||||
"configuration_dict = {'number_of_epochs': 3, 'batch_size': 8, 'dropout': 0.3, 'base_lr': 0.005, \n",
|
"configuration_dict = {'number_of_epochs': 3, 'batch_size': 8, 'dropout': 0.3, 'base_lr': 0.005, \n",
|
||||||
" 'number_of_mel_filters': 64, 'resample_freq': 22050}\n",
|
" 'number_of_mel_filters': 64, 'resample_freq': 22050}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -81,8 +81,8 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Download UrbanSound8K dataset (https://urbansounddataset.weebly.com/urbansound8k.html)\n",
|
"# Download UrbanSound8K dataset (https://urbansounddataset.weebly.com/urbansound8k.html)\n",
|
||||||
"# For simplicity we will use here a subset of that dataset using trains StorageManager\n",
|
"# For simplicity we will use here a subset of that dataset using clearml StorageManager\n",
|
||||||
"path_to_UrbanSound8K = StorageManager.get_local_copy(\"https://allegro-datasets.s3.amazonaws.com/trains/UrbanSound8K.zip\", \n",
|
"path_to_UrbanSound8K = StorageManager.get_local_copy(\"https://allegro-datasets.s3.amazonaws.com/clearml/UrbanSound8K.zip\", \n",
|
||||||
" extract_archive=True)\n",
|
" extract_archive=True)\n",
|
||||||
"path_to_UrbanSound8K_csv = Path(path_to_UrbanSound8K) / 'UrbanSound8K' / 'metadata' / 'UrbanSound8K.csv'\n",
|
"path_to_UrbanSound8K_csv = Path(path_to_UrbanSound8K) / 'UrbanSound8K' / 'metadata' / 'UrbanSound8K.csv'\n",
|
||||||
"path_to_UrbanSound8K_audio = Path(path_to_UrbanSound8K) / 'UrbanSound8K' / 'audio'"
|
"path_to_UrbanSound8K_audio = Path(path_to_UrbanSound8K) / 'UrbanSound8K' / 'audio'"
|
||||||
|
@ -12,7 +12,7 @@
|
|||||||
"! pip install -U torch==1.5.1\n",
|
"! pip install -U torch==1.5.1\n",
|
||||||
"! pip install -U torchaudio==0.5.1\n",
|
"! pip install -U torchaudio==0.5.1\n",
|
||||||
"! pip install -U matplotlib==3.2.1\n",
|
"! pip install -U matplotlib==3.2.1\n",
|
||||||
"! pip install -U trains>=0.16.1\n",
|
"! pip install -U clearml>=0.16.1\n",
|
||||||
"! pip install -U tensorboard==2.2.1"
|
"! pip install -U tensorboard==2.2.1"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -28,7 +28,7 @@
|
|||||||
"from torch.utils.tensorboard import SummaryWriter\n",
|
"from torch.utils.tensorboard import SummaryWriter\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"%matplotlib inline"
|
"%matplotlib inline"
|
||||||
]
|
]
|
||||||
@ -41,7 +41,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"task = Task.init(project_name='Audio Example', task_name='data pre-processing')\n",
|
"task = Task.init(project_name='Audio Example', task_name='data pre-processing')\n",
|
||||||
"configuration_dict = {'number_of_samples': 3}\n",
|
"configuration_dict = {'number_of_samples': 3}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -7,12 +7,12 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# execute this in command line on all machines to be used as workers before initiating the hyperparamer search \n",
|
"# execute this in command line on all machines to be used as workers before initiating the hyperparamer search \n",
|
||||||
"# ! pip install -U trains-agent==0.15.0\n",
|
"# ! pip install -U clearml-agent==0.15.0\n",
|
||||||
"# ! trains-agent daemon --queue default\n",
|
"# ! clearml-agent daemon --queue default\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# pip install with locked versions\n",
|
"# pip install with locked versions\n",
|
||||||
"! pip install -U pandas==1.0.3\n",
|
"! pip install -U pandas==1.0.3\n",
|
||||||
"! pip install -U trains>=0.16.2\n",
|
"! pip install -U clearml>=0.16.2\n",
|
||||||
"! pip install -U optuna==2.0.0"
|
"! pip install -U optuna==2.0.0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -22,11 +22,11 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from trains.automation import UniformParameterRange, UniformIntegerParameterRange\n",
|
"from clearml.automation import UniformParameterRange, UniformIntegerParameterRange\n",
|
||||||
"from trains.automation import HyperParameterOptimizer\n",
|
"from clearml.automation import HyperParameterOptimizer\n",
|
||||||
"from trains.automation.optuna import OptimizerOptuna\n",
|
"from clearml.automation.optuna import OptimizerOptuna\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -72,7 +72,7 @@
|
|||||||
" objective_metric_series='total',\n",
|
" objective_metric_series='total',\n",
|
||||||
" objective_metric_sign='max', # maximize or minimize the objective metric\n",
|
" objective_metric_sign='max', # maximize or minimize the objective metric\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # setting optimizer - trains supports GridSearch, RandomSearch, OptimizerBOHB and OptimizerOptuna\n",
|
" # setting optimizer - clearml supports GridSearch, RandomSearch, OptimizerBOHB and OptimizerOptuna\n",
|
||||||
" optimizer_class=OptimizerOptuna,\n",
|
" optimizer_class=OptimizerOptuna,\n",
|
||||||
" \n",
|
" \n",
|
||||||
" # Configuring optimization parameters\n",
|
" # Configuring optimization parameters\n",
|
||||||
|
@ -15,7 +15,7 @@
|
|||||||
"! pip install -U torch==1.5.1\n",
|
"! pip install -U torch==1.5.1\n",
|
||||||
"! pip install -U torchvision==0.6.1\n",
|
"! pip install -U torchvision==0.6.1\n",
|
||||||
"! pip install -U numpy==1.18.4\n",
|
"! pip install -U numpy==1.18.4\n",
|
||||||
"! pip install -U trains>=0.16.1\n",
|
"! pip install -U clearml>=0.16.1\n",
|
||||||
"! pip install -U tensorboard==2.2.1"
|
"! pip install -U tensorboard==2.2.1"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -36,7 +36,7 @@
|
|||||||
"import torchvision.datasets as datasets\n",
|
"import torchvision.datasets as datasets\n",
|
||||||
"import torchvision.transforms as transforms\n",
|
"import torchvision.transforms as transforms\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -47,7 +47,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"task = Task.init(project_name='Image Example', task_name='image classification CIFAR10')\n",
|
"task = Task.init(project_name='Image Example', task_name='image classification CIFAR10')\n",
|
||||||
"configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}\n",
|
"configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U torch==1.5.1\n",
|
"! pip install -U torch==1.5.1\n",
|
||||||
"! pip install -U trains>=0.15.1\n",
|
"! pip install -U clearml>=0.15.1\n",
|
||||||
"! pip install -U pandas==1.0.4\n",
|
"! pip install -U pandas==1.0.4\n",
|
||||||
"! pip install -U numpy==1.18.4\n",
|
"! pip install -U numpy==1.18.4\n",
|
||||||
"! pip install -U pathlib2==2.3.5\n",
|
"! pip install -U pathlib2==2.3.5\n",
|
||||||
@ -28,7 +28,7 @@
|
|||||||
"import torch\n",
|
"import torch\n",
|
||||||
"from datetime import datetime\n",
|
"from datetime import datetime\n",
|
||||||
"from pathlib2 import Path\n",
|
"from pathlib2 import Path\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -40,7 +40,7 @@
|
|||||||
"task = Task.init(project_name='Table Example', task_name='tabular preprocessing')\n",
|
"task = Task.init(project_name='Table Example', task_name='tabular preprocessing')\n",
|
||||||
"logger = task.get_logger()\n",
|
"logger = task.get_logger()\n",
|
||||||
"configuration_dict = {'test_size': 0.1, 'split_random_state': 0}\n",
|
"configuration_dict = {'test_size': 0.1, 'split_random_state': 0}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U trains==0.16.2rc0\n",
|
"! pip install -U clearml==0.16.2rc0\n",
|
||||||
"! pip install -U pandas==1.0.4\n",
|
"! pip install -U pandas==1.0.4\n",
|
||||||
"! pip install -U scikit-learn==0.23.1\n",
|
"! pip install -U scikit-learn==0.23.1\n",
|
||||||
"! pip install -U pathlib2==2.3.5"
|
"! pip install -U pathlib2==2.3.5"
|
||||||
@ -23,7 +23,7 @@
|
|||||||
"from pathlib2 import Path\n",
|
"from pathlib2 import Path\n",
|
||||||
"from sklearn.model_selection import train_test_split\n",
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -35,7 +35,7 @@
|
|||||||
"task = Task.init(project_name='Tabular Example', task_name='Download and split tabular dataset')\n",
|
"task = Task.init(project_name='Tabular Example', task_name='Download and split tabular dataset')\n",
|
||||||
"logger = task.get_logger()\n",
|
"logger = task.get_logger()\n",
|
||||||
"configuration_dict = {'test_size': 0.1, 'split_random_state': 0}\n",
|
"configuration_dict = {'test_size': 0.1, 'split_random_state': 0}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -54,9 +54,9 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Download the shelter-animal-outcomes dataset (https://www.kaggle.com/c/shelter-animal-outcomes)\n",
|
"# Download the shelter-animal-outcomes dataset (https://www.kaggle.com/c/shelter-animal-outcomes)\n",
|
||||||
"# and save it to your cloud storage or your mounted local storage\n",
|
"# and save it to your cloud storage or your mounted local storage\n",
|
||||||
"# If the data is on your cloud storage, you can use trains' storage manager to get a local copy of it:\n",
|
"# If the data is on your cloud storage, you can use clearml' storage manager to get a local copy of it:\n",
|
||||||
"# from trains.storage import StorageManager\n",
|
"# from clearml.storage import StorageManager\n",
|
||||||
"# path_to_ShelterAnimal = StorageManager.get_local_copy(\"https://allegro-datasets.s3.amazonaws.com/trains/UrbanSound8K.zip\", \n",
|
"# path_to_ShelterAnimal = StorageManager.get_local_copy(\"https://allegro-datasets.s3.amazonaws.com/clearml/UrbanSound8K.zip\", \n",
|
||||||
"# extract_archive=True)\n",
|
"# extract_archive=True)\n",
|
||||||
"path_to_ShelterAnimal = '/home/sam/Datasets/shelter-animal-outcomes'"
|
"path_to_ShelterAnimal = '/home/sam/Datasets/shelter-animal-outcomes'"
|
||||||
]
|
]
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U trains==0.16.2rc0"
|
"! pip install -U clearml==0.16.2rc0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -16,7 +16,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from trains import Task, OutputModel"
|
"from clearml import Task, OutputModel"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -27,7 +27,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"task = Task.init(project_name='Tabular Example', task_name='pick best model')\n",
|
"task = Task.init(project_name='Tabular Example', task_name='pick best model')\n",
|
||||||
"configuration_dict = {'train_tasks_ids': ['c9bff3d15309487a9e5aaa00358ff091', 'c9bff3d15309487a9e5aaa00358ff091']}\n",
|
"configuration_dict = {'train_tasks_ids': ['c9bff3d15309487a9e5aaa00358ff091', 'c9bff3d15309487a9e5aaa00358ff091']}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U trains==0.16.2rc0\n",
|
"! pip install -U clearml==0.16.2rc0\n",
|
||||||
"! pip install -U pandas==1.0.4\n",
|
"! pip install -U pandas==1.0.4\n",
|
||||||
"! pip install -U numpy==1.18.4"
|
"! pip install -U numpy==1.18.4"
|
||||||
]
|
]
|
||||||
@ -22,7 +22,7 @@
|
|||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"from collections import Counter\n",
|
"from collections import Counter\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -35,7 +35,7 @@
|
|||||||
"logger = task.get_logger()\n",
|
"logger = task.get_logger()\n",
|
||||||
"configuration_dict = {'data_task_id': '39fbf86fc4a341359ac6df4aa70ff91b',\n",
|
"configuration_dict = {'data_task_id': '39fbf86fc4a341359ac6df4aa70ff91b',\n",
|
||||||
" 'fill_categorical_NA': True, 'fill_numerical_NA': True}\n",
|
" 'fill_categorical_NA': True, 'fill_numerical_NA': True}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# pip install with locked versions\n",
|
"# pip install with locked versions\n",
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U trains==0.16.2rc0"
|
"! pip install -U clearml==0.16.2rc0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -17,8 +17,8 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"from trains.automation.controller import PipelineController"
|
"from clearml.automation.controller import PipelineController"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"! pip install -U pip\n",
|
"! pip install -U pip\n",
|
||||||
"! pip install -U torch==1.5.1\n",
|
"! pip install -U torch==1.5.1\n",
|
||||||
"! pip install -U trains==0.16.2rc0\n",
|
"! pip install -U clearml==0.16.2rc0\n",
|
||||||
"! pip install -U pandas==1.0.4\n",
|
"! pip install -U pandas==1.0.4\n",
|
||||||
"! pip install -U numpy==1.18.4\n",
|
"! pip install -U numpy==1.18.4\n",
|
||||||
"! pip install -U tensorboard==2.2.1"
|
"! pip install -U tensorboard==2.2.1"
|
||||||
@ -29,7 +29,7 @@
|
|||||||
"from torch.utils.data import Dataset\n",
|
"from torch.utils.data import Dataset\n",
|
||||||
"from torch.utils.tensorboard import SummaryWriter\n",
|
"from torch.utils.tensorboard import SummaryWriter\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task"
|
"from clearml import Task"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -42,7 +42,7 @@
|
|||||||
"logger = task.get_logger()\n",
|
"logger = task.get_logger()\n",
|
||||||
"configuration_dict = {'data_task_id': 'b605d76398f941e69fc91b43420151d2', \n",
|
"configuration_dict = {'data_task_id': 'b605d76398f941e69fc91b43420151d2', \n",
|
||||||
" 'number_of_epochs': 15, 'batch_size': 100, 'dropout': 0.3, 'base_lr': 0.1}\n",
|
" 'number_of_epochs': 15, 'batch_size': 100, 'dropout': 0.3, 'base_lr': 0.1}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -10,7 +10,7 @@
|
|||||||
"! pip install -U torch==1.5.0\n",
|
"! pip install -U torch==1.5.0\n",
|
||||||
"! pip install -U torchtext==0.6.0\n",
|
"! pip install -U torchtext==0.6.0\n",
|
||||||
"! pip install -U matplotlib==3.2.1\n",
|
"! pip install -U matplotlib==3.2.1\n",
|
||||||
"! pip install -U trains>=0.15.0\n",
|
"! pip install -U clearml>=0.15.0\n",
|
||||||
"! pip install -U tensorboard==2.2.1"
|
"! pip install -U tensorboard==2.2.1"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -28,7 +28,7 @@
|
|||||||
"from torchtext.datasets import text_classification\n",
|
"from torchtext.datasets import text_classification\n",
|
||||||
"from torch.utils.tensorboard import SummaryWriter\n",
|
"from torch.utils.tensorboard import SummaryWriter\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"%matplotlib inline"
|
"%matplotlib inline"
|
||||||
]
|
]
|
||||||
@ -41,7 +41,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"task = Task.init(project_name='Text Example', task_name='text classifier')\n",
|
"task = Task.init(project_name='Text Example', task_name='text classifier')\n",
|
||||||
"configuration_dict = {'number_of_epochs': 6, 'batch_size': 16, 'ngrams': 2, 'base_lr': 1.0}\n",
|
"configuration_dict = {'number_of_epochs': 6, 'batch_size': 16, 'ngrams': 2, 'base_lr': 1.0}\n",
|
||||||
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by trains\n",
|
"configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml\n",
|
||||||
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
"print(configuration_dict) # printing actual configuration (after override in remote mode)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -7,13 +7,13 @@
|
|||||||
"id": "RZiRah3QiR_G"
|
"id": "RZiRah3QiR_G"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"# Allegro Trains logging example\n",
|
"# Allegro ClearML logging example\n",
|
||||||
"\n",
|
"\n",
|
||||||
"[](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/reporting/Allegro_Trains_logging_example.ipynb)\n",
|
"[](https://colab.research.google.com/github/allegroai/clearml/blob/master/examples/reporting/Allegro_Trains_logging_example.ipynb)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This example introduces Trains [Logger](https://allegro.ai/docs/logger.html) functionality. Logger is the Trains console log and metric interface.\n",
|
"This example introduces ClearML [Logger](https://allegro.ai/docs/logger.html) functionality. Logger is the ClearML console log and metric interface.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"You can find more reporting examples [here](https://github.com/allegroai/trains/tree/master/examples/reporting)."
|
"You can find more reporting examples [here](https://github.com/allegroai/clearml/tree/master/examples/reporting)."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -26,7 +26,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"!pip install trains\n",
|
"!pip install clearml\n",
|
||||||
"!pip install numpy"
|
"!pip install numpy"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -40,7 +40,7 @@
|
|||||||
"### Create a new Task\n",
|
"### Create a new Task\n",
|
||||||
"Create a new Task and get a Logger object for the Task.\n",
|
"Create a new Task and get a Logger object for the Task.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.\n",
|
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the ClearML demo server.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html).\n",
|
"You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html).\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -59,7 +59,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from trains import Task\n",
|
"from clearml import Task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Start a new task\n",
|
"# Start a new task\n",
|
||||||
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Explicit Logging\")\n",
|
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Explicit Logging\")\n",
|
||||||
@ -77,7 +77,7 @@
|
|||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Explicit scalar logging\n",
|
"### Explicit scalar logging\n",
|
||||||
"Use the [Logger.report_scalar](https://allegro.ai/docs/logger.html#trains.logger.Logger.report_scalar) method to explicitly log scalars. Scalar plots appear in the Web UI, Results > Scalars tab."
|
"Use the [Logger.report_scalar](https://allegro.ai/docs/logger.html#clearml.logger.Logger.report_scalar) method to explicitly log scalars. Scalar plots appear in the Web UI, Results > Scalars tab."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -241,7 +241,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from trains.storage import StorageManager\n",
|
"from clearml.storage import StorageManager\n",
|
||||||
"image_local_copy = StorageManager.get_local_copy(\n",
|
"image_local_copy = StorageManager.get_local_copy(\n",
|
||||||
" remote_url=\"https://pytorch.org/tutorials/_static/img/neural-style/picasso.jpg\",\n",
|
" remote_url=\"https://pytorch.org/tutorials/_static/img/neural-style/picasso.jpg\",\n",
|
||||||
" name=\"picasso.jpg\"\n",
|
" name=\"picasso.jpg\"\n",
|
||||||
@ -273,7 +273,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"#### Report images and media\n",
|
"#### Report images and media\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Use [Logger.report_image](https://allegro.ai/docs/logger.html?highlight=report_image#trains.logger.Logger.report_image) and [Logger.report_media](https://allegro.ai/docs/logger.html?highlight=report_media#trains.logger.Logger.report_media) to report the downloaded samples. The debug samples appear in the Results > Debug Samples tab."
|
"Use [Logger.report_image](https://allegro.ai/docs/logger.html?highlight=report_image#clearml.logger.Logger.report_image) and [Logger.report_media](https://allegro.ai/docs/logger.html?highlight=report_media#clearml.logger.Logger.report_media) to report the downloaded samples. The debug samples appear in the Results > Debug Samples tab."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -316,7 +316,7 @@
|
|||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Explicit text logging\n",
|
"### Explicit text logging\n",
|
||||||
"Use [Logger.report_text](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.report_text) to log text message. They appear in Results > Log."
|
"Use [Logger.report_text](https://allegro.ai/docs/logger.html?highlight=report_text#clearml.logger.Logger.report_text) to log text message. They appear in Results > Log."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -344,7 +344,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Reports are flushed in the background every couple of seconds, and at the end of the process execution.\n",
|
"Reports are flushed in the background every couple of seconds, and at the end of the process execution.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Or, flush the Logger by calling [Logger.flush](https://allegro.ai/docs/logger.html?highlight=report_text#trains.logger.Logger.flush)."
|
"Or, flush the Logger by calling [Logger.flush](https://allegro.ai/docs/logger.html?highlight=report_text#clearml.logger.Logger.flush)."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -364,7 +364,7 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"name": "Allegro Trains logging example.ipynb",
|
"name": "Allegro ClearML logging example.ipynb",
|
||||||
"provenance": []
|
"provenance": []
|
||||||
},
|
},
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
|
@ -1 +0,0 @@
|
|||||||
matplotlib_manual_reporting.py
|
|
Loading…
Reference in New Issue
Block a user