mirror of
https://github.com/clearml/clearml
synced 2025-06-26 18:16:07 +00:00
Fix Kerastuner framework and examples #1279
This commit is contained in:
@@ -3,75 +3,77 @@
|
||||
import keras_tuner as kt
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
from clearml.external.kerastuner import ClearmlTunerLogger
|
||||
|
||||
from clearml.external.kerastuner import ClearmlTunerCallback
|
||||
|
||||
from clearml import Task
|
||||
|
||||
physical_devices = tf.config.list_physical_devices('GPU')
|
||||
physical_devices = tf.config.list_physical_devices("GPU")
|
||||
if physical_devices:
|
||||
tf.config.experimental.set_visible_devices(physical_devices[0], 'GPU')
|
||||
tf.config.experimental.set_visible_devices(physical_devices[0], "GPU")
|
||||
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||
|
||||
|
||||
def build_model(hp):
|
||||
inputs = tf.keras.Input(shape=(32, 32, 3))
|
||||
x = inputs
|
||||
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
|
||||
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
|
||||
for i in range(hp.Int("conv_blocks", 3, 5, default=3)):
|
||||
filters = hp.Int("filters_" + str(i), 32, 256, step=32)
|
||||
for _ in range(2):
|
||||
x = tf.keras.layers.Convolution2D(
|
||||
filters, kernel_size=(3, 3), padding='same')(x)
|
||||
x = tf.keras.layers.Convolution2D(filters, kernel_size=(3, 3), padding="same")(x)
|
||||
x = tf.keras.layers.BatchNormalization()(x)
|
||||
x = tf.keras.layers.ReLU()(x)
|
||||
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
|
||||
if hp.Choice("pooling_" + str(i), ["avg", "max"]) == "max":
|
||||
x = tf.keras.layers.MaxPool2D()(x)
|
||||
else:
|
||||
x = tf.keras.layers.AvgPool2D()(x)
|
||||
x = tf.keras.layers.AvgPool2D(pool_size=1)(x)
|
||||
x = tf.keras.layers.GlobalAvgPool2D()(x)
|
||||
x = tf.keras.layers.Dense(
|
||||
hp.Int('hidden_size', 30, 100, step=10, default=50),
|
||||
activation='relu')(x)
|
||||
x = tf.keras.layers.Dropout(
|
||||
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
|
||||
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
|
||||
x = tf.keras.layers.Dense(hp.Int("hidden_size", 30, 100, step=10, default=50), activation="relu")(x)
|
||||
x = tf.keras.layers.Dropout(hp.Float("dropout", 0, 0.5, step=0.1, default=0.5))(x)
|
||||
outputs = tf.keras.layers.Dense(10, activation="softmax")(x)
|
||||
|
||||
model = tf.keras.Model(inputs, outputs)
|
||||
model.compile(
|
||||
optimizer=tf.keras.optimizers.Adam(
|
||||
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
optimizer=tf.keras.optimizers.Adam(hp.Float("learning_rate", 1e-4, 1e-2, sampling="log")),
|
||||
loss="sparse_categorical_crossentropy",
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
task = Task.init('examples', 'kerastuner cifar10 tuning')
|
||||
task = Task.init("examples", "kerastuner cifar10 tuning")
|
||||
|
||||
tuner = kt.Hyperband(
|
||||
build_model,
|
||||
project_name='kt examples',
|
||||
logger=ClearmlTunerLogger(),
|
||||
objective='val_accuracy',
|
||||
project_name="kt examples",
|
||||
# logger=ClearmlTunerLogger(),
|
||||
objective="val_accuracy",
|
||||
max_epochs=10,
|
||||
hyperband_iterations=6)
|
||||
hyperband_iterations=6,
|
||||
)
|
||||
|
||||
data = tfds.load('cifar10')
|
||||
train_ds, test_ds = data['train'], data['test']
|
||||
data = tfds.load("cifar10")
|
||||
train_ds, test_ds = data["train"], data["test"]
|
||||
|
||||
|
||||
def standardize_record(record):
|
||||
return tf.cast(record['image'], tf.float32) / 255., record['label']
|
||||
return tf.cast(record["image"], tf.float32) / 255.0, record["label"]
|
||||
|
||||
|
||||
train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
|
||||
test_ds = test_ds.map(standardize_record).cache().batch(64)
|
||||
|
||||
tuner.search(train_ds,
|
||||
validation_data=test_ds,
|
||||
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
|
||||
tf.keras.callbacks.TensorBoard(),
|
||||
])
|
||||
tuner.search(
|
||||
train_ds,
|
||||
validation_data=test_ds,
|
||||
callbacks=[
|
||||
tf.keras.callbacks.EarlyStopping(patience=1),
|
||||
tf.keras.callbacks.TensorBoard(),
|
||||
ClearmlTunerCallback(tuner)
|
||||
],
|
||||
)
|
||||
|
||||
best_model = tuner.get_best_models(1)[0]
|
||||
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
|
||||
|
||||
77
examples/frameworks/kerastuner/keras_tuner_cifar_legacy.py
Normal file
77
examples/frameworks/kerastuner/keras_tuner_cifar_legacy.py
Normal file
@@ -0,0 +1,77 @@
|
||||
"""Keras Tuner CIFAR10 example for the TensorFlow blog post."""
|
||||
|
||||
import keras_tuner as kt
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
from clearml.external.kerastuner import ClearmlTunerLogger
|
||||
|
||||
from clearml import Task
|
||||
|
||||
physical_devices = tf.config.list_physical_devices('GPU')
|
||||
if physical_devices:
|
||||
tf.config.experimental.set_visible_devices(physical_devices[0], 'GPU')
|
||||
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||
|
||||
|
||||
def build_model(hp):
|
||||
inputs = tf.keras.Input(shape=(32, 32, 3))
|
||||
x = inputs
|
||||
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
|
||||
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
|
||||
for _ in range(2):
|
||||
x = tf.keras.layers.Convolution2D(
|
||||
filters, kernel_size=(3, 3), padding='same')(x)
|
||||
x = tf.keras.layers.BatchNormalization()(x)
|
||||
x = tf.keras.layers.ReLU()(x)
|
||||
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
|
||||
x = tf.keras.layers.MaxPool2D()(x)
|
||||
else:
|
||||
x = tf.keras.layers.AvgPool2D()(x)
|
||||
x = tf.keras.layers.GlobalAvgPool2D()(x)
|
||||
x = tf.keras.layers.Dense(
|
||||
hp.Int('hidden_size', 30, 100, step=10, default=50),
|
||||
activation='relu')(x)
|
||||
x = tf.keras.layers.Dropout(
|
||||
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
|
||||
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
|
||||
|
||||
model = tf.keras.Model(inputs, outputs)
|
||||
model.compile(
|
||||
optimizer=tf.keras.optimizers.Adam(
|
||||
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
task = Task.init('examples', 'kerastuner cifar10 tuning')
|
||||
|
||||
tuner = kt.Hyperband(
|
||||
build_model,
|
||||
project_name='kt examples',
|
||||
logger=ClearmlTunerLogger(),
|
||||
objective='val_accuracy',
|
||||
max_epochs=10,
|
||||
hyperband_iterations=6)
|
||||
|
||||
data = tfds.load('cifar10')
|
||||
train_ds, test_ds = data['train'], data['test']
|
||||
|
||||
|
||||
def standardize_record(record):
|
||||
return tf.cast(record['image'], tf.float32) / 255., record['label']
|
||||
|
||||
|
||||
train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
|
||||
test_ds = test_ds.map(standardize_record).cache().batch(64)
|
||||
|
||||
tuner.search(train_ds,
|
||||
validation_data=test_ds,
|
||||
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
|
||||
tf.keras.callbacks.TensorBoard(),
|
||||
])
|
||||
|
||||
best_model = tuner.get_best_models(1)[0]
|
||||
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
|
||||
Reference in New Issue
Block a user