Update README

This commit is contained in:
allegroai 2023-11-14 11:42:02 +02:00
parent c4bf20c294
commit 27021a1a19

View File

@ -4,8 +4,8 @@
<img align="center" src="docs/clearml-logo.svg#gh-light-mode-only" alt="Clear|ML"><img align="center" src="docs/clearml-logo-dark.svg#gh-dark-mode-only" alt="Clear|ML">
</p>
**[ClearML](https://clear.ml) - Auto-Magical Suite of tools to streamline your ML workflow
</br>Experiment Manager, MLOps and Data-Management**
**[ClearML](https://clear.ml) - Auto-Magical Suite of tools to streamline your AI workflow
</br>Experiment Manager, MLOps/LLMOps and Data-Management**
[![GitHub license](https://img.shields.io/github/license/allegroai/clearml.svg)](https://img.shields.io/github/license/allegroai/clearml.svg) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml.svg)](https://img.shields.io/pypi/pyversions/clearml.svg) [![PyPI version shields.io](https://img.shields.io/pypi/v/clearml.svg)](https://pypi.org/project/clearml/) [![Conda version shields.io](https://img.shields.io/conda/v/clearml/clearml)](https://anaconda.org/clearml/clearml) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)<br>
[![PyPI Downloads](https://static.pepy.tech/badge/clearml/month)](https://pypi.org/project/clearml/) [![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/allegroai)](https://artifacthub.io/packages/search?repo=allegroai) [![Youtube](https://img.shields.io/badge/ClearML-DD0000?logo=youtube&logoColor=white)](https://www.youtube.com/c/clearml) [![Slack Channel](https://img.shields.io/badge/slack-%23clearml--community-blueviolet?logo=slack)](https://joinslack.clear.ml) [![Signup](https://img.shields.io/badge/Clear%7CML-Signup-brightgreen)](https://app.clear.ml)
@ -19,14 +19,15 @@
ClearML is a ML/DL development and production suite. It contains FIVE main modules:
- [Experiment Manager](#clearml-experiment-manager) - Automagical experiment tracking, environments and results
- [MLOps](https://github.com/allegroai/clearml-agent) - Orchestration, Automation & Pipelines solution for ML/DL jobs (K8s / Cloud / bare-metal)
- [MLOps / LLMOps](https://github.com/allegroai/clearml-agent) - Orchestration, Automation & Pipelines solution for ML/DL/GenAI jobs (Kubernetes / Cloud / bare-metal)
- [Data-Management](https://github.com/allegroai/clearml/blob/master/docs/datasets.md) - Fully differentiable data management & version control solution on top of object-storage
(S3 / GS / Azure / NAS)
- [Model-Serving](https://github.com/allegroai/clearml-serving) - *cloud-ready* Scalable model serving solution!
- **Deploy new model endpoints in under 5 minutes**
- Includes optimized GPU serving support backed by Nvidia-Triton
- **with out-of-the-box Model Monitoring**
- **NEW** :fire: [Reports](https://clear.ml/docs/latest/docs/webapp/webapp_reports) - Create and share rich MarkDown documents supporting embeddable online content
- [Reports](https://clear.ml/docs/latest/docs/webapp/webapp_reports) - Create and share rich MarkDown documents supporting embeddable online content
- **NEW** :fire: [Orchestration Dashboard](https://clear.ml/docs/latest/docs/webapp/webapp_orchestration_dash/) - Live rich dashboard for your entire compute cluster (Cloud / Kubernetes / On-Prem)
Instrumenting these components is the **ClearML-server**, see [Self-Hosting](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) & [Free tier Hosting](https://app.clear.ml)
@ -141,7 +142,7 @@ The ClearML run-time components:
- [clearml-session](https://github.com/allegroai/clearml-session) - **Launch remote JupyterLab / VSCode-server inside any docker, on Cloud/On-Prem machines**
- [clearml-task](https://github.com/allegroai/clearml/blob/master/docs/clearml-task.md) - Run any codebase on remote machines with full remote logging of Tensorboard, Matplotlib & Console outputs
- [clearml-data](https://github.com/allegroai/clearml/blob/master/docs/datasets.md) - **CLI for managing and versioning your datasets, including creating / uploading / downloading of data from S3/GS/Azure/NAS**
- [AWS Auto-Scaler](https://clear.ml/docs/latest/docs/guides/services/aws_autoscaler) - Automatically spin EC2 instances based on your workloads with preconfigured budget! No need for K8s!
- [AWS Auto-Scaler](https://clear.ml/docs/latest/docs/guides/services/aws_autoscaler) - Automatically spin EC2 instances based on your workloads with preconfigured budget! No need for AKE!
- [Hyper-Parameter Optimization](https://clear.ml/docs/latest/docs/guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt) - Optimize any code with black-box approach and state-of-the-art Bayesian optimization algorithms
- [Automation Pipeline](https://clear.ml/docs/latest/docs/guides/pipeline/pipeline_controller) - Build pipelines based on existing experiments / jobs, supports building pipelines of pipelines!
- [Slack Integration](https://clear.ml/docs/latest/docs/guides/services/slack_alerts) - Report experiments progress / failure directly to Slack (fully customizable!)