mirror of
https://github.com/clearml/clearml
synced 2025-03-31 23:57:42 +00:00
Add Dataset examples (#485)
* Add data_management example * split dataset_management into two - dataset creation and data ingerstion examples * add underscore to project name * delete space * black format
This commit is contained in:
parent
0f2eef3ef4
commit
23b0c500f1
214
examples/datasets/data_ingestion.py
Normal file
214
examples/datasets/data_ingestion.py
Normal file
@ -0,0 +1,214 @@
|
||||
# Using ClearML's Dataset class to register data
|
||||
# Make sure to execute dataset_creation.py first
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torchvision.datasets as datasets
|
||||
import torchvision.transforms as transforms
|
||||
from ignite.contrib.handlers import TensorboardLogger
|
||||
from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
|
||||
from ignite.handlers import global_step_from_engine
|
||||
from ignite.metrics import Accuracy, Loss, Recall
|
||||
from ignite.utils import setup_logger
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
from clearml import Dataset, Task
|
||||
|
||||
dataset_name = "cifar_dataset"
|
||||
dataset_project = "dataset_examples"
|
||||
|
||||
task = Task.init(project_name="Image Example", task_name="image classification CIFAR10")
|
||||
params = {
|
||||
"number_of_epochs": 20,
|
||||
"batch_size": 64,
|
||||
"dropout": 0.25,
|
||||
"base_lr": 0.001,
|
||||
"momentum": 0.9,
|
||||
"loss_report": 100,
|
||||
}
|
||||
params = task.connect(params) # enabling configuration override by clearml/
|
||||
print(params) # printing actual configuration (after override in remote mode)
|
||||
|
||||
|
||||
# The below gets the dataset and stores in the cache. If you want to download the dataset regardless if it's in the
|
||||
# cache, use the Dataset.get(dataset_name, dataset_project).get_mutable_local_copy(path to download)
|
||||
dataset_path = Dataset.get(
|
||||
dataset_name=dataset_name, dataset_project=dataset_project
|
||||
).get_local_copy()
|
||||
|
||||
# Dataset and Dataloader initializations
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
|
||||
trainset = datasets.CIFAR10(
|
||||
root=dataset_path, train=True, download=False, transform=transform
|
||||
)
|
||||
trainloader = torch.utils.data.DataLoader(
|
||||
trainset, batch_size=params.get("batch_size", 4), shuffle=True, num_workers=10
|
||||
)
|
||||
|
||||
testset = datasets.CIFAR10(
|
||||
root=dataset_path, train=False, download=False, transform=transform
|
||||
)
|
||||
testloader = torch.utils.data.DataLoader(
|
||||
testset, batch_size=params.get("batch_size", 4), shuffle=False, num_workers=10
|
||||
)
|
||||
|
||||
classes = (
|
||||
"plane",
|
||||
"car",
|
||||
"bird",
|
||||
"cat",
|
||||
"deer",
|
||||
"dog",
|
||||
"frog",
|
||||
"horse",
|
||||
"ship",
|
||||
"truck",
|
||||
)
|
||||
|
||||
tb_logger = TensorboardLogger(log_dir="cifar-output")
|
||||
|
||||
|
||||
# Helper function to store predictions and scores using matplotlib
|
||||
def predictions_gt_images_handler(engine, logger, *args, **kwargs):
|
||||
x, _ = engine.state.batch
|
||||
y_pred, y = engine.state.output
|
||||
|
||||
num_x = num_y = 4
|
||||
le = num_x * num_y
|
||||
fig = plt.figure(figsize=(20, 20))
|
||||
trans = transforms.ToPILImage()
|
||||
for idx in range(le):
|
||||
preds = torch.argmax(F.softmax(y_pred[idx], dim=0))
|
||||
probs = torch.max(F.softmax(y_pred[idx], dim=0))
|
||||
ax = fig.add_subplot(num_x, num_y, idx + 1, xticks=[], yticks=[])
|
||||
ax.imshow(trans(x[idx]))
|
||||
ax.set_title(
|
||||
"{0} {1:.1f}% (label: {2})".format(
|
||||
classes[preds], probs * 100, classes[y[idx]]
|
||||
),
|
||||
color=("green" if preds == y[idx] else "red"),
|
||||
)
|
||||
logger.writer.add_figure(
|
||||
"predictions vs actuals", figure=fig, global_step=engine.state.epoch
|
||||
)
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 6, 3)
|
||||
self.conv2 = nn.Conv2d(6, 16, 3)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.fc1 = nn.Linear(16 * 6 * 6, 120)
|
||||
self.fc2 = nn.Linear(120, 84)
|
||||
self.dorpout = nn.Dropout(p=params.get("dropout", 0.25))
|
||||
self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = x.view(-1, 16 * 6 * 6)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.fc3(self.dorpout(x))
|
||||
return x
|
||||
|
||||
|
||||
# Training
|
||||
def run(epochs, lr, momentum, log_interval):
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
net = Net().to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
|
||||
|
||||
trainer = create_supervised_trainer(net, optimizer, criterion, device=device)
|
||||
trainer.logger = setup_logger("trainer")
|
||||
|
||||
val_metrics = {"accuracy": Accuracy(), "loss": Loss(criterion), "recall": Recall()}
|
||||
evaluator = create_supervised_evaluator(net, metrics=val_metrics, device=device)
|
||||
evaluator.logger = setup_logger("evaluator")
|
||||
|
||||
# Attach handler to plot trainer's loss every 100 iterations
|
||||
tb_logger.attach_output_handler(
|
||||
trainer,
|
||||
event_name=Events.ITERATION_COMPLETED(every=params.get("loss_report")),
|
||||
tag="training",
|
||||
output_transform=lambda loss: {"loss": loss},
|
||||
)
|
||||
|
||||
# Attach handler to dump evaluator's metrics every epoch completed
|
||||
for tag, evaluator in [("training", trainer), ("validation", evaluator)]:
|
||||
tb_logger.attach_output_handler(
|
||||
evaluator,
|
||||
event_name=Events.EPOCH_COMPLETED,
|
||||
tag=tag,
|
||||
metric_names="all",
|
||||
global_step_transform=global_step_from_engine(trainer),
|
||||
)
|
||||
|
||||
# Attach function to build debug images and report every epoch end
|
||||
tb_logger.attach(
|
||||
evaluator,
|
||||
log_handler=predictions_gt_images_handler,
|
||||
event_name=Events.EPOCH_COMPLETED(once=1),
|
||||
)
|
||||
|
||||
desc = "ITERATION - loss: {:.2f}"
|
||||
pbar = tqdm(initial=0, leave=False, total=len(trainloader), desc=desc.format(0))
|
||||
|
||||
@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
|
||||
def log_training_loss(engine):
|
||||
pbar.desc = desc.format(engine.state.output)
|
||||
pbar.update(log_interval)
|
||||
|
||||
@trainer.on(Events.EPOCH_COMPLETED)
|
||||
def log_training_results(engine):
|
||||
pbar.refresh()
|
||||
evaluator.run(trainloader)
|
||||
metrics = evaluator.state.metrics
|
||||
avg_accuracy = metrics["accuracy"]
|
||||
avg_nll = metrics["loss"]
|
||||
tqdm.write(
|
||||
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
|
||||
engine.state.epoch, avg_accuracy, avg_nll
|
||||
)
|
||||
)
|
||||
|
||||
@trainer.on(Events.EPOCH_COMPLETED)
|
||||
def log_validation_results(engine):
|
||||
evaluator.run(testloader)
|
||||
metrics = evaluator.state.metrics
|
||||
avg_accuracy = metrics["accuracy"]
|
||||
avg_nll = metrics["loss"]
|
||||
tqdm.write(
|
||||
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
|
||||
engine.state.epoch, avg_accuracy, avg_nll
|
||||
)
|
||||
)
|
||||
|
||||
pbar.n = pbar.last_print_n = 0
|
||||
|
||||
@trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
|
||||
def log_time():
|
||||
tqdm.write(
|
||||
"{} took {} seconds".format(
|
||||
trainer.last_event_name.name,
|
||||
trainer.state.times[trainer.last_event_name.name],
|
||||
)
|
||||
)
|
||||
|
||||
trainer.run(trainloader, max_epochs=epochs)
|
||||
pbar.close()
|
||||
|
||||
PATH = "./cifar_net.pth"
|
||||
torch.save(net.state_dict(), PATH)
|
||||
|
||||
print("Finished Training")
|
||||
print("Task ID number is: {}".format(task.id))
|
||||
|
||||
|
||||
run(params.get("number_of_epochs"), params.get("base_lr"), params.get("momentum"), 10)
|
21
examples/datasets/dataset_creation.py
Normal file
21
examples/datasets/dataset_creation.py
Normal file
@ -0,0 +1,21 @@
|
||||
# Download CIFAR dataset and create a dataset with ClearML's Dataset class
|
||||
from clearml import StorageManager, Dataset
|
||||
|
||||
manager = StorageManager()
|
||||
|
||||
dataset_path = manager.get_local_copy(
|
||||
remote_url="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
|
||||
)
|
||||
|
||||
dataset = Dataset.create(
|
||||
dataset_name="cifar_dataset", dataset_project="dataset_examples"
|
||||
)
|
||||
|
||||
# Prepare and clean data here before it is added to the dataset
|
||||
|
||||
dataset.add_files(path=dataset_path)
|
||||
|
||||
# Dataset is uploaded to the ClearML Server by default
|
||||
dataset.upload()
|
||||
|
||||
dataset.finalize()
|
Loading…
Reference in New Issue
Block a user