clearml/examples/frameworks/pytorch/notebooks/image/hyperparameter_search.ipynb

137 lines
4.8 KiB
Plaintext
Raw Normal View History

2020-06-15 19:48:51 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# execute this in command line on all machines to be used as workers before initiating the hyperparamer search \n",
"# ! pip install -U trains-agent==0.15.0\n",
"# ! trains-agent daemon --queue default\n",
"\n",
"# pip install with locked versions\n",
"! pip install -U pandas==1.0.3\n",
2020-08-10 05:04:58 +00:00
"! pip install -U trains>=0.15.0\n",
"! pip install -U optuna==2.0.0rc0"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from trains.automation import UniformParameterRange, UniformIntegerParameterRange\n",
2020-08-10 05:04:58 +00:00
"from trains.automation import HyperParameterOptimizer\n",
"from trains.automation.optuna import OptimizerOptuna\n",
2020-06-15 19:48:51 +00:00
"\n",
"from trains import Task"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2020-08-10 05:04:58 +00:00
"task = Task.init(project_name='Hyper-Parameter Search', task_name='Hyper-Parameter Optimization')\n"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#####################################################################\n",
"### Don't forget to replace this default id with your own task id ###\n",
"#####################################################################\n",
2020-08-10 05:04:58 +00:00
"TEMPLATE_TASK_ID = 'd551a9990cb5451c9c744cc58201c612'"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = HyperParameterOptimizer(\n",
" base_task_id=TEMPLATE_TASK_ID, # This is the experiment we want to optimize\n",
" # here we define the hyper-parameters to optimize\n",
" hyper_parameters=[\n",
" UniformIntegerParameterRange('number_of_epochs', min_value=5, max_value=15, step_size=1),\n",
" UniformIntegerParameterRange('batch_size', min_value=2, max_value=12, step_size=2),\n",
" UniformParameterRange('dropout', min_value=0, max_value=0.5, step_size=0.05),\n",
" UniformParameterRange('base_lr', min_value=0.0005, max_value=0.01, step_size=0.0005),\n",
" ],\n",
" # this is the objective metric we want to maximize/minimize\n",
" objective_metric_title='accuracy',\n",
" objective_metric_series='total',\n",
" objective_metric_sign='max', # maximize or minimize the objective metric\n",
" max_number_of_concurrent_tasks=3, # number of concurrent experiments\n",
" # setting optimizer - trains supports GridSearch, RandomSearch or OptimizerBOHB\n",
2020-08-10 05:04:58 +00:00
" optimizer_class=OptimizerOptuna, # can be replaced with OptimizerBOHB\n",
2020-06-15 19:48:51 +00:00
" execution_queue='default', # queue to schedule the experiments for execution\n",
" optimization_time_limit=30., # time limit for each experiment (optional, ignored by OptimizerBOHB)\n",
" pool_period_min=1, # Check the experiments every x minutes\n",
" # set the maximum number of experiments for the optimization.\n",
" # OptimizerBOHB sets the total number of iteration as total_max_jobs * max_iteration_per_job\n",
" total_max_jobs=12,\n",
" # setting OptimizerBOHB configuration (ignored by other optimizers)\n",
" min_iteration_per_job=15000, # minimum number of iterations per experiment, till early stopping\n",
" max_iteration_per_job=150000, # maximum number of iterations per experiment\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2020-08-10 05:04:58 +00:00
"optimizer.set_time_limit(in_minutes=90.0) # set the time limit for the optimization process\n",
2020-06-15 19:48:51 +00:00
"optimizer.start() \n",
"optimizer.wait() # wait until process is done\n",
"optimizer.stop() # make sure background optimization stopped"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optimization is completed, print the top performing experiments id\n",
"k = 3\n",
"top_exp = optimizer.get_top_experiments(top_k=k)\n",
"print('Top {} experiments are:'.format(k))\n",
"for n, t in enumerate(top_exp, 1):\n",
" print('Rank {}: task id={} |result={}'\n",
" .format(n, t.id, t.get_last_scalar_metrics()['accuracy']['total']['last']))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}