clearml/examples/services/aws-autoscaler/aws_autoscaler.py

321 lines
12 KiB
Python
Raw Normal View History

import json
from argparse import ArgumentParser
from collections import defaultdict
from itertools import chain
2021-11-17 17:15:48 +00:00
from pathlib import Path
from typing import Tuple
import yaml
2020-12-22 21:25:37 +00:00
from clearml import Task
2021-11-17 17:15:48 +00:00
from clearml.automation.auto_scaler import AutoScaler, ScalerConfig
from clearml.automation.aws_driver import AWSDriver
2020-12-22 21:25:37 +00:00
from clearml.config import running_remotely
from clearml.utilities.wizard.user_input import (
2021-11-17 17:15:48 +00:00
get_input, input_bool, input_int, input_list, multiline_input
)
DEFAULT_DOCKER_IMAGE = "nvidia/cuda:10.1-runtime-ubuntu18.04"
2021-11-17 17:15:48 +00:00
default_config = {
'hyper_params': {
'git_user': '',
'git_pass': '',
'cloud_credentials_key': '',
'cloud_credentials_secret': '',
'cloud_credentials_region': None,
'default_docker_image': 'nvidia/cuda',
'max_idle_time_min': 15,
'polling_interval_time_min': 5,
'max_spin_up_time_min': 30,
'workers_prefix': 'dynamic_worker',
'cloud_provider': '',
},
'configurations': {
'resource_configurations': None,
'queues': None,
'extra_trains_conf': '',
'extra_clearml_conf': '',
'extra_vm_bash_script': '',
},
}
def main():
parser = ArgumentParser()
parser.add_argument(
"--run",
help="Run the autoscaler after wizard finished",
action="store_true",
default=False,
)
parser.add_argument(
"--remote",
help="Run the autoscaler as a service, launch on the `services` queue",
action="store_true",
default=False,
)
2021-11-17 17:15:48 +00:00
parser.add_argument(
"--config-file",
help="Configuration file name",
type=Path,
default=Path("aws_autoscaler.yaml"),
)
args = parser.parse_args()
if running_remotely():
2021-11-17 17:15:48 +00:00
conf = default_config
else:
print("AWS Autoscaler setup wizard\n"
"---------------------------\n"
"Follow the wizard to configure your AWS auto-scaler service.\n"
2020-12-22 21:25:37 +00:00
"Once completed, you will be able to view and change the configuration in the clearml-server web UI.\n"
"It means there is no need to worry about typos or mistakes :)\n")
2021-11-17 17:15:48 +00:00
if args.config_file.exists() and input_bool(
"Load configurations from config file '{}' [Y/n]? ".format(args.config_file),
default=True,
):
2021-11-17 17:15:48 +00:00
with args.config_file.open("r") as f:
conf = yaml.load(f, Loader=yaml.SafeLoader)
else:
configurations, hyper_params = run_wizard()
2021-11-17 17:15:48 +00:00
conf = {
"hyper_params": hyper_params,
"configurations": configurations,
}
# noinspection PyBroadException
try:
2021-11-17 17:15:48 +00:00
with args.config_file.open("w+") as f:
yaml.safe_dump(conf, f)
except Exception:
print(
"Error! Could not write configuration file at: {}".format(
2021-11-17 17:15:48 +00:00
args.config_file
)
)
return
2020-12-23 22:30:32 +00:00
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="DevOps", task_name="AWS Auto-Scaler", task_type=Task.TaskTypes.service)
2021-11-17 17:15:48 +00:00
task.connect(conf['hyper_params'])
configurations = conf['configurations']
configurations.update(json.loads(task.get_configuration_object(name="General") or "{}"))
task.set_configuration_object(name="General", config_text=json.dumps(configurations, indent=2))
if args.remote or args.run:
print("Running AWS auto-scaler as a service\nExecution log {}".format(task.get_output_log_web_page()))
if args.remote:
# if we are running remotely enqueue this run, and leave the process
2020-12-22 21:25:37 +00:00
# the clearml-agent services will pick it up and execute it for us.
task.execute_remotely(queue_name='services')
2021-11-17 17:15:48 +00:00
driver = AWSDriver.from_config(conf)
conf = ScalerConfig.from_config(conf)
autoscaler = AutoScaler(conf, driver)
if running_remotely() or args.run:
autoscaler.start()
def run_wizard():
# type: () -> Tuple[dict, dict]
2021-11-17 17:15:48 +00:00
hyper_params = default_config['hyper_params']
configurations = default_config['configurations']
2021-11-17 17:15:48 +00:00
hyper_params['cloud_credentials_key'] = get_input("AWS Access Key ID", required=True)
hyper_params['cloud_credentials_secret'] = get_input(
"AWS Secret Access Key", required=True
)
2021-11-17 17:15:48 +00:00
hyper_params['cloud_credentials_region'] = get_input(
"AWS region name",
2020-10-12 08:01:08 +00:00
"[us-east-1]",
default='us-east-1')
# get GIT User/Pass for cloning
print(
"\nGIT credentials:"
"\nEnter GIT username for repository cloning (leave blank for SSH key authentication): [] ",
end="",
)
git_user = input()
if git_user.strip():
print("Enter password for user '{}': ".format(git_user), end="")
git_pass = input()
print(
"Git repository cloning will be using user={} password={}".format(
git_user, git_pass
)
)
else:
2021-11-17 17:15:48 +00:00
git_user = ''
git_pass = ''
2021-11-17 17:15:48 +00:00
hyper_params['git_user'] = git_user
hyper_params['git_pass'] = git_pass
2021-11-17 17:15:48 +00:00
hyper_params['default_docker_image'] = get_input(
"default docker image/parameters",
"to use [{}]".format(DEFAULT_DOCKER_IMAGE),
default=DEFAULT_DOCKER_IMAGE,
new_line=True,
)
print("\nConfigure the machine types for the auto-scaler:")
print("------------------------------------------------")
resource_configurations = {}
while True:
a_resource = {
"instance_type": get_input(
"Amazon instance type",
"['g4dn.4xlarge']",
question='Select',
default="g4dn.4xlarge",
),
"is_spot": input_bool(
"Use spot instances? [y/N]"
),
"availability_zone": get_input(
"availability zone",
"['us-east-1b']",
question='Select',
default="us-east-1b",
),
"ami_id": get_input(
"the Amazon Machine Image id",
"['ami-04c0416d6bd8e4b1f']",
question='Select',
default="ami-04c0416d6bd8e4b1f",
),
"ebs_device_name": get_input(
"the Amazon EBS device",
"['/dev/sda1']",
default="/dev/sda1",
),
"ebs_volume_size": input_int(
"the Amazon EBS volume size",
"(in GiB) [100]",
default=100,
),
"ebs_volume_type": get_input(
"the Amazon EBS volume type",
"['gp3']",
default="gp3",
),
"key_name": get_input(
"the Amazon Key Pair name",
),
"security_group_ids": input_list(
"Amazon Security Group ID",
),
}
while True:
resource_name = get_input(
"a name for this instance type",
"(used in the budget section) For example 'aws4gpu'",
question='Select',
required=True,
)
if resource_name in resource_configurations:
print("\tError: instance type '{}' already used!".format(resource_name))
continue
break
resource_configurations[resource_name] = a_resource
if not input_bool("\nDefine another instance type? [y/N]"):
break
2021-11-17 17:15:48 +00:00
configurations['resource_configurations'] = resource_configurations
2021-11-17 17:15:48 +00:00
configurations['extra_vm_bash_script'], num_lines_bash_script = multiline_input(
"\nEnter any pre-execution bash script to be executed on the newly created instances []"
)
print("Entered {} lines of pre-execution bash script".format(num_lines_bash_script))
2021-11-17 17:15:48 +00:00
configurations['extra_clearml_conf'], num_lines_clearml_conf = multiline_input(
"\nEnter anything you'd like to include in your clearml.conf file []"
)
print("Entered {} extra lines for clearml.conf file".format(num_lines_clearml_conf))
print("\nDefine the machines budget:")
print("-----------------------------")
2021-11-17 17:15:48 +00:00
resource_configurations_names = list(configurations['resource_configurations'].keys())
queues = defaultdict(list)
while True:
while True:
queue_name = get_input("a queue name (for example: 'aws_4gpu_machines')", question='Select', required=True)
if queue_name in queues:
print("\tError: queue name '{}' already used!".format(queue_name))
continue
break
while True:
valid_instances = [k for k in resource_configurations_names
if k not in (q[0] for q in queues[queue_name])]
while True:
queue_type = get_input(
2020-10-12 08:01:08 +00:00
"an instance type to attach to the queue",
"{}".format(valid_instances),
question="Select",
required=True,
)
2021-11-17 17:15:48 +00:00
if queue_type not in configurations['resource_configurations']:
print("\tError: instance type '{}' not in predefined instances {}!".format(
2021-11-17 17:15:48 +00:00
queue_type, resource_configurations_names))
continue
if queue_type in (q[0] for q in queues[queue_name]):
print("\tError: instance type '{}' already in {}!".format(
queue_type, queue_name))
continue
if queue_type in [q[0] for q in chain.from_iterable(queues.values())]:
queue_type_new = '{}_{}'.format(queue_type, queue_name)
print("\tInstance type '{}' already used, renaming instance to {}".format(
queue_type, queue_type_new))
2021-11-17 17:15:48 +00:00
configurations['resource_configurations'][queue_type_new] = \
dict(**configurations['resource_configurations'][queue_type])
queue_type = queue_type_new
# make sure the renamed name is not reused
if queue_type in (q[0] for q in queues[queue_name]):
print("\tError: instance type '{}' already in {}!".format(
queue_type, queue_name))
continue
break
max_instances = input_int(
"maximum number of '{}' instances to spin simultaneously (example: 3)".format(queue_type),
required=True
)
queues[queue_name].append((queue_type, max_instances))
2021-11-17 17:15:48 +00:00
valid_instances = [k for k in configurations['resource_configurations'].keys()
if k not in (q[0] for q in queues[queue_name])]
if not valid_instances:
break
if not input_bool("Do you wish to add another instance type to queue? [y/N]: "):
break
if not input_bool("\nAdd another queue? [y/N]"):
break
2021-11-17 17:15:48 +00:00
configurations['queues'] = dict(queues)
2021-11-17 17:15:48 +00:00
hyper_params['max_idle_time_min'] = input_int(
"maximum idle time",
"for the auto-scaler to spin down an instance (in minutes) [15]",
default=15,
new_line=True,
)
2021-11-17 17:15:48 +00:00
hyper_params['polling_interval_time_min'] = input_int(
"instances polling interval", "for the auto-scaler (in minutes) [5]", default=5,
)
2021-11-17 17:15:48 +00:00
return configurations, hyper_params
if __name__ == "__main__":
main()