mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
56 lines
1.3 KiB
Python
56 lines
1.3 KiB
Python
|
# TRAINS - Example of Matplotlib and Seaborn integration and reporting
|
||
|
#
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from trains import Task
|
||
|
|
||
|
# Create a new task, disable automatic matplotlib connect
|
||
|
task = Task.init(
|
||
|
project_name='examples',
|
||
|
task_name='Manual Matplotlib example',
|
||
|
auto_connect_frameworks={'matplotlib': False}
|
||
|
)
|
||
|
|
||
|
# Create plot and explicitly report as figure
|
||
|
N = 50
|
||
|
x = np.random.rand(N)
|
||
|
y = np.random.rand(N)
|
||
|
colors = np.random.rand(N)
|
||
|
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
|
||
|
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
|
||
|
task.logger.report_matplotlib_figure(
|
||
|
title="Manual Reporting",
|
||
|
series="Just a plot",
|
||
|
iteration=0,
|
||
|
figure=plt,
|
||
|
)
|
||
|
|
||
|
# Show the plot
|
||
|
plt.show()
|
||
|
|
||
|
# Create plot and explicitly report as an image
|
||
|
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
|
||
|
task.logger.report_matplotlib_figure(
|
||
|
title="Manual Reporting",
|
||
|
series="Plot as an image",
|
||
|
iteration=0,
|
||
|
figure=plt,
|
||
|
report_image=True,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Create an image plot and explicitly report (as an image)
|
||
|
m = np.eye(256, 256, dtype=np.uint8)
|
||
|
plt.imshow(m)
|
||
|
task.logger.report_matplotlib_figure(
|
||
|
title="Manual Reporting",
|
||
|
series="Image plot",
|
||
|
iteration=0,
|
||
|
figure=plt,
|
||
|
report_image=True, # Note this is required for image plots
|
||
|
)
|
||
|
|
||
|
# Show the plot
|
||
|
plt.show()
|
||
|
|