clearml/examples/frameworks/lightgbm/lightgbm_example.py

105 lines
2.7 KiB
Python
Raw Normal View History

2020-12-22 21:25:37 +00:00
# ClearML - Example of LightGBM integration
2020-10-12 09:34:52 +00:00
#
import lightgbm as lgb
2023-05-25 14:43:13 +00:00
import matplotlib.pyplot as plt
2020-10-12 09:34:52 +00:00
import pandas as pd
from sklearn.metrics import mean_squared_error
2020-12-22 21:25:37 +00:00
from clearml import Task
2020-10-12 09:34:52 +00:00
2023-05-25 14:43:13 +00:00
def main():
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="LightGBM")
print('Loading data...')
# Load or create your dataset
df_train = pd.read_csv(
'https://raw.githubusercontent.com/microsoft/LightGBM/master/examples/regression/regression.train',
header=None, sep='\t'
)
df_test = pd.read_csv(
'https://raw.githubusercontent.com/microsoft/LightGBM/master/examples/regression/regression.test',
header=None, sep='\t'
)
y_train = df_train[0]
y_test = df_test[0]
X_train = df_train.drop(0, axis=1)
X_test = df_test.drop(0, axis=1)
# Create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# Specify your configurations as a dict
params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': {'l2', 'l1'},
'num_leaves': 200,
'max_depth': 0,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0,
'force_col_wise': True,
'deterministic': True,
}
evals_result = {} # to record eval results for plotting
print('Starting training...')
# Train
gbm = lgb.train(
params,
lgb_train,
num_boost_round=500,
valid_sets=[lgb_train, lgb_eval],
feature_name=[f'f{i + 1}' for i in range(X_train.shape[-1])],
categorical_feature=[21],
callbacks=[
lgb.record_evaluation(evals_result),
],
)
print('Saving model...')
# Save model to file
gbm.save_model('model.txt')
print('Plotting metrics recorded during training...')
ax = lgb.plot_metric(evals_result, metric='l1')
plt.show()
print('Plotting feature importances...')
ax = lgb.plot_importance(gbm, max_num_features=10)
plt.show()
print('Plotting split value histogram...')
ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto')
plt.show()
print('Loading model to predict...')
# Load model to predict
bst = lgb.Booster(model_file='model.txt')
# Can only predict with the best iteration (or the saving iteration)
y_pred = bst.predict(X_test)
# Eval with loaded model
print("The rmse of loaded model's prediction is:", mean_squared_error(y_test, y_pred) ** 0.5)
if __name__ == '__main__':
main()