2020-12-22 21:25:37 +00:00
|
|
|
# ClearML - Example of LightGBM integration
|
2020-10-12 09:34:52 +00:00
|
|
|
#
|
|
|
|
import lightgbm as lgb
|
2023-05-25 14:43:13 +00:00
|
|
|
import matplotlib.pyplot as plt
|
2020-10-12 09:34:52 +00:00
|
|
|
import pandas as pd
|
|
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
|
2020-12-22 21:25:37 +00:00
|
|
|
from clearml import Task
|
2020-10-12 09:34:52 +00:00
|
|
|
|
2023-05-25 14:43:13 +00:00
|
|
|
|
|
|
|
def main():
|
|
|
|
# Connecting ClearML with the current process,
|
|
|
|
# from here on everything is logged automatically
|
|
|
|
task = Task.init(project_name="examples", task_name="LightGBM")
|
|
|
|
|
|
|
|
print('Loading data...')
|
|
|
|
|
|
|
|
# Load or create your dataset
|
|
|
|
|
|
|
|
df_train = pd.read_csv(
|
|
|
|
'https://raw.githubusercontent.com/microsoft/LightGBM/master/examples/regression/regression.train',
|
|
|
|
header=None, sep='\t'
|
|
|
|
)
|
|
|
|
df_test = pd.read_csv(
|
|
|
|
'https://raw.githubusercontent.com/microsoft/LightGBM/master/examples/regression/regression.test',
|
|
|
|
header=None, sep='\t'
|
|
|
|
)
|
|
|
|
|
|
|
|
y_train = df_train[0]
|
|
|
|
y_test = df_test[0]
|
|
|
|
X_train = df_train.drop(0, axis=1)
|
|
|
|
X_test = df_test.drop(0, axis=1)
|
|
|
|
|
|
|
|
# Create dataset for lightgbm
|
|
|
|
lgb_train = lgb.Dataset(X_train, y_train)
|
|
|
|
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
|
|
|
|
|
|
|
|
# Specify your configurations as a dict
|
|
|
|
params = {
|
|
|
|
'boosting_type': 'gbdt',
|
|
|
|
'objective': 'regression',
|
|
|
|
'metric': {'l2', 'l1'},
|
|
|
|
'num_leaves': 200,
|
|
|
|
'max_depth': 0,
|
|
|
|
'learning_rate': 0.05,
|
|
|
|
'feature_fraction': 0.9,
|
|
|
|
'bagging_fraction': 0.8,
|
|
|
|
'bagging_freq': 5,
|
|
|
|
'verbose': 0,
|
|
|
|
'force_col_wise': True,
|
|
|
|
'deterministic': True,
|
|
|
|
}
|
|
|
|
|
|
|
|
evals_result = {} # to record eval results for plotting
|
|
|
|
|
|
|
|
print('Starting training...')
|
|
|
|
|
|
|
|
# Train
|
|
|
|
gbm = lgb.train(
|
|
|
|
params,
|
|
|
|
lgb_train,
|
|
|
|
num_boost_round=500,
|
|
|
|
valid_sets=[lgb_train, lgb_eval],
|
|
|
|
feature_name=[f'f{i + 1}' for i in range(X_train.shape[-1])],
|
|
|
|
categorical_feature=[21],
|
|
|
|
callbacks=[
|
|
|
|
lgb.record_evaluation(evals_result),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
print('Saving model...')
|
|
|
|
|
|
|
|
# Save model to file
|
|
|
|
gbm.save_model('model.txt')
|
|
|
|
|
|
|
|
print('Plotting metrics recorded during training...')
|
|
|
|
|
|
|
|
ax = lgb.plot_metric(evals_result, metric='l1')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
print('Plotting feature importances...')
|
|
|
|
|
|
|
|
ax = lgb.plot_importance(gbm, max_num_features=10)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
print('Plotting split value histogram...')
|
|
|
|
|
|
|
|
ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
print('Loading model to predict...')
|
|
|
|
|
|
|
|
# Load model to predict
|
|
|
|
bst = lgb.Booster(model_file='model.txt')
|
|
|
|
|
|
|
|
# Can only predict with the best iteration (or the saving iteration)
|
|
|
|
y_pred = bst.predict(X_test)
|
|
|
|
|
|
|
|
# Eval with loaded model
|
|
|
|
print("The rmse of loaded model's prediction is:", mean_squared_error(y_test, y_pred) ** 0.5)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|