.. | ||
preprocess.py | ||
readme.md |
Deploy vLLM model
setting up the serving service
-
Create serving Service:
clearml-serving create --name "serving example"
(write down the service ID) -
Make sure to add any required additional packages (for your custom model) to the docker-compose.yml (or as environment variable to the
clearml-serving-inference
container), by defining for example:CLEARML_EXTRA_PYTHON_PACKAGES="vllm==0.5.4"
-
Create model endpoint:
clearml-serving --id <service_id> model add --model-id <model_id> --engine vllm --endpoint "test_vllm" --preprocess "examples/vllm/preprocess.py" --name "test vllm" --project "serving examples"
Or auto update
clearml-serving --id <service_id> model auto-update --engine vllm --endpoint "test_vllm" --preprocess "examples/vllm/preprocess.py" --name "test vllm" --project "serving examples" --max-versions 2
Or add Canary endpoint
clearml-serving --id <service_id> model canary --endpoint "test_vllm" --weights 0.1 0.9 --input-endpoint-prefix test_vllm
-
If you already have the
clearml-serving
docker-compose running, it might take it a minute or two to sync with the new endpoint.Or you can run the clearml-serving container independently
docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
-
Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory):
import openai
openai.api_key = "dummy"
openai.api_base = f"http://serving.apps.okd.mts.ai/clearml/v1"
r0 = await openai.ChatCompletion.acreate(
model=vllm_endpoint,
messages=[{"role": "system", "content": ""}, {"role": "user", "content": "Hi there, goodman!"}],
temperature=1.0,
max_tokens=1024,
top_p=1.0,
request_timeout=10000,
)
print(f"ChatCompletion: {r0['choices'][0]['message']}")
r1 = await openai.Completion.acreate(
model=vllm_endpoint,
prompt="Hi there, goodman!",
temperature=1.0,
max_tokens=256,
)
print(f"Completion: \n {r1['choices'][0]['text']}")
NOTE!
If you want to use send_request method, keep in mind that you have to pass "completions" or "chat/completions" in entrypoint (and pass model as a part of "data" parameter) and use it for non-streaming models:
prompt = "Hi there, goodman!"
result = self.send_request(endpoint="chat/completions", version=None, data={"model": "test_vllm", "messages": [{"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": prompt}]})
answer = result.choises[0].message.content
OR If you want to use send_request method, use openai client instead