clearml-serving/examples/pytorch
2022-03-21 01:00:19 +02:00
..
preprocess.py Add model metric logging 2022-03-21 01:00:19 +02:00
readme.md Add model metric logging 2022-03-21 01:00:19 +02:00
requirements.txt ClearML-Serving v2 initial working commit 2022-03-06 01:25:56 +02:00
train_pytorch_mnist.py ClearML-Serving v2 initial working commit 2022-03-06 01:25:56 +02:00

Train and Deploy Keras model with Nvidia Triton Engine

training mnist digit classifier model

Run the mock python training code

pip install -r examples/pytorch/requirements.txt 
python examples/pytorch/train_pytorch_mnist.py

The output will be a model created on the project "serving examples", by the name "train pytorch model" Notice Only TorchScript models are supported by Triton server

setting up the serving service

Prerequisites, PyTorch models require Triton engine support, please use docker-compose-triton.yml / docker-compose-triton-gpu.yml or if running on Kubernetes, the matching helm chart.

  1. Create serving Service: clearml-serving create --name "serving example" (write down the service ID)
  2. Create model endpoint:

clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_pytorch" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --input-size 1 28 28 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32

Or auto update

clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2 --input-size 1 28 28 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32

Or add Canary endpoint

clearml-serving --id <service_id> model canary --endpoint "test_model_pytorch_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_pytorch_auto

  1. Run the Triton Engine docker run -v ~/clearml.conf:/root/clearml.conf -p 8001:8001 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving-triton:latest
  2. Configure the Triton Engine IP on the Serving Service (if running on k8s, the gRPC ingest of the triton container) clearml-serving --id <service_id> config --triton-grpc-server <local_ip_here>:8001
  3. Run the clearml-serving container docker run -v ~/clearml.conf:/root/clearml.conf -p 8001:8001 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
  4. Test new endpoint: curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "accept: application/json" -H "Content-Type: application/json" -d '{"url": "https://camo.githubusercontent.com/8385ca52c9cba1f6e629eb938ab725ec8c9449f12db81f9a34e18208cd328ce9/687474703a2f2f706574722d6d6172656b2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f6465636f6d707265737365642e6a7067"}'

Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute