clearml-serving/examples/vllm
IlyaMescheryakov1402 32d72bcd1c add vllm example
2025-02-28 22:36:14 +03:00
..
preprocess.py add vllm example 2025-02-28 22:36:14 +03:00
readme.md add vllm example 2025-02-28 22:36:14 +03:00

Deploy vLLM model

setting up the serving service

  1. Create serving Service: clearml-serving create --name "serving example" (write down the service ID)
  2. Make sure to add any required additional packages (for your custom model) to the docker-compose.yml (or as environment variable to the clearml-serving-inference container), by defining for example: CLEARML_EXTRA_PYTHON_PACKAGES="vllm==0.5.4"
  3. Create model endpoint: clearml-serving --id <service_id> model add --engine vllm --endpoint "test_vllm" --preprocess "examples/vllm/preprocess.py" --name "test vllm" --project "serving examples"

Or auto update

clearml-serving --id <service_id> model auto-update --engine vllm --endpoint "test_vllm" --preprocess "examples/vllm/preprocess.py" --name "test vllm" --project "serving examples" --max-versions 2

Or add Canary endpoint

clearml-serving --id <service_id> model canary --endpoint "test_vllm" --weights 0.1 0.9 --input-endpoint-prefix test_vllm

  1. If you already have the clearml-serving docker-compose running, it might take it a minute or two to sync with the new endpoint.

Or you can run the clearml-serving container independently docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest

  1. Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory):

import openai
openai.api_key = "dummy"
openai.api_base = f"http://serving.apps.okd.mts.ai/clearml/v1"


r0 = await openai.ChatCompletion.acreate(
    model=vllm_endpoint,
    messages=[{"role": "system", "content": ""}, {"role": "user", "content": "Hi there, goodman!"}],
    temperature=1.0,
    max_tokens=1024,
    top_p=1.0,
    request_timeout=10000,
)

print(f"ChatCompletion: {r0['choices'][0]['message']}")

r1 = await openai.Completion.acreate(
    model=vllm_endpoint,
    prompt="Hi there, goodman!",
    temperature=1.0,
    max_tokens=256,
)

print(f"Completion: \n {r1['choices'][0]['text']}")