import os from typing import Optional, Any, Callable, List import numpy as np from clearml import Task, Model from clearml.binding.artifacts import Artifacts from clearml.storage.util import sha256sum from requests import post as request_post from .endpoints import ModelEndpoint class BasePreprocessRequest(object): __preprocessing_lookup = {} __preprocessing_modules = set() _default_serving_base_url = "http://127.0.0.1:8080/serve/" _server_config = {} # externally configured by the serving inference service _timeout = None # timeout in seconds for the entire request, set in __init__ def __init__( self, model_endpoint: ModelEndpoint, task: Task = None, ): """ Notice this object is not be created per request, but once per Process Make sure it is always thread-safe """ self.model_endpoint = model_endpoint self._preprocess = None self._model = None if self._timeout is None: self._timeout = int(float(os.environ.get('GUNICORN_SERVING_TIMEOUT', 600)) * 0.8) # load preprocessing code here if self.model_endpoint.preprocess_artifact: if not task or self.model_endpoint.preprocess_artifact not in task.artifacts: raise ValueError("Error: could not find preprocessing artifact \'{}\' on Task id={}".format( self.model_endpoint.preprocess_artifact, task.id)) else: try: self._instantiate_custom_preprocess_cls(task) except Exception as ex: raise ValueError("Error: Failed loading preprocess code for \'{}\': {}".format( self.model_endpoint.preprocess_artifact, ex)) def _instantiate_custom_preprocess_cls(self, task: Task) -> None: path = task.artifacts[self.model_endpoint.preprocess_artifact].get_local_copy() # check file content hash, should only happens once?! # noinspection PyProtectedMember file_hash, _ = sha256sum(path, block_size=Artifacts._hash_block_size) if file_hash != task.artifacts[self.model_endpoint.preprocess_artifact].hash: print("INFO: re-downloading artifact '{}' hash changed".format( self.model_endpoint.preprocess_artifact)) path = task.artifacts[self.model_endpoint.preprocess_artifact].get_local_copy( extract_archive=True, force_download=True, ) else: # extract zip if we need to, otherwise it will be the same path = task.artifacts[self.model_endpoint.preprocess_artifact].get_local_copy( extract_archive=True, ) import importlib.util spec = importlib.util.spec_from_file_location("Preprocess", path) _preprocess = importlib.util.module_from_spec(spec) spec.loader.exec_module(_preprocess) Preprocess = _preprocess.Preprocess # noqa # override `send_request` method Preprocess.send_request = BasePreprocessRequest._preprocess_send_request # create preprocess class self._preprocess = Preprocess() # custom model load callback function if callable(getattr(self._preprocess, 'load', None)): self._model = self._preprocess.load(self._get_local_model_file()) def preprocess(self, request: dict, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Optional[Any]: """ Raise exception to report an error Return value will be passed to serving engine :param request: dictionary as recieved from the RestAPI :param collect_custom_statistics_fn: Optional, allows to send a custom set of key/values to the statictics collector servicd Usage example: >>> print(request) {"x0": 1, "x1": 2} >>> collect_custom_statistics_fn({"x0": 1, "x1": 2}) :return: Object to be passed directly to the model inference """ if self._preprocess is not None and hasattr(self._preprocess, 'preprocess'): return self._preprocess.preprocess(request, collect_custom_statistics_fn) return request def postprocess(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Optional[dict]: """ Raise exception to report an error Return value will be passed to serving engine :param data: object as recieved from the inference model function :param collect_custom_statistics_fn: Optional, allows to send a custom set of key/values to the statictics collector servicd Usage example: >>> collect_custom_statistics_fn({"y": 1}) :return: Dictionary passed directly as the returned result of the RestAPI """ if self._preprocess is not None and hasattr(self._preprocess, 'postprocess'): return self._preprocess.postprocess(data, collect_custom_statistics_fn) return data def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. Can be send to external service :param data: object as recieved from the preprocessing function :param collect_custom_statistics_fn: Optional, allows to send a custom set of key/values to the statictics collector servicd Usage example: >>> collect_custom_statistics_fn({"type": "classification"}) :return: Object to be passed tp the post-processing function """ pass def _get_local_model_file(self): model_repo_object = Model(model_id=self.model_endpoint.model_id) return model_repo_object.get_local_copy() @classmethod def set_server_config(cls, server_config: dict) -> None: cls._server_config = server_config @classmethod def get_server_config(cls) -> dict: return cls._server_config @classmethod def validate_engine_type(cls, engine: str) -> bool: return engine in cls.__preprocessing_lookup @classmethod def get_engine_cls(cls, engine: str) -> Callable: return cls.__preprocessing_lookup.get(engine) @staticmethod def register_engine(engine_name: str, modules: Optional[List[str]] = None) -> Callable: """ A decorator to register an annotation type name for classes deriving from Annotation """ def wrapper(cls): cls.__preprocessing_lookup[engine_name] = cls return cls if modules: BasePreprocessRequest.__preprocessing_modules |= set(modules) return wrapper @staticmethod def load_modules() -> None: for m in BasePreprocessRequest.__preprocessing_modules: try: # silently fail import importlib importlib.import_module(m) except (ImportError, TypeError): pass @staticmethod def _preprocess_send_request(self, endpoint: str, version: str = None, data: dict = None) -> Optional[dict]: endpoint = "{}/{}".format(endpoint.strip("/"), version.strip("/")) if version else endpoint.strip("/") base_url = BasePreprocessRequest.get_server_config().get("base_serving_url") base_url = (base_url or BasePreprocessRequest._default_serving_base_url).strip("/") url = "{}/{}".format(base_url, endpoint.strip("/")) return_value = request_post(url, json=data, timeout=BasePreprocessRequest._timeout) if not return_value.ok: return None return return_value.json() @BasePreprocessRequest.register_engine("triton", modules=["grpc", "tritonclient"]) class TritonPreprocessRequest(BasePreprocessRequest): _content_lookup = { np.uint8: 'uint_contents', np.int8: 'int_contents', np.int64: 'int64_contents', np.uint64: 'uint64_contents', np.int: 'int_contents', np.uint: 'uint_contents', np.bool: 'bool_contents', np.float32: 'fp32_contents', np.float64: 'fp64_contents', } _default_grpc_address = "127.0.0.1:8001" _ext_grpc = None _ext_np_to_triton_dtype = None _ext_service_pb2 = None _ext_service_pb2_grpc = None def __init__(self, model_endpoint: ModelEndpoint, task: Task = None): super(TritonPreprocessRequest, self).__init__( model_endpoint=model_endpoint, task=task) # load Triton Module if self._ext_grpc is None: import grpc # noqa self._ext_grpc = grpc if self._ext_np_to_triton_dtype is None: from tritonclient.utils import np_to_triton_dtype # noqa self._ext_np_to_triton_dtype = np_to_triton_dtype if self._ext_service_pb2 is None: from tritonclient.grpc import service_pb2, service_pb2_grpc # noqa self._ext_service_pb2 = service_pb2 self._ext_service_pb2_grpc = service_pb2_grpc def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. Detect gRPC server and send the request to it :param data: object as recieved from the preprocessing function :param collect_custom_statistics_fn: Optional, allows to send a custom set of key/values to the statictics collector servicd Usage example: >>> collect_custom_statistics_fn({"type": "classification"}) :return: Object to be passed tp the post-processing function """ # allow to override bt preprocessing class if self._preprocess is not None and hasattr(self._preprocess, "process"): return self._preprocess.process(data, collect_custom_statistics_fn) # Create gRPC stub for communicating with the server triton_server_address = self._server_config.get("triton_grpc_server") or self._default_grpc_address if not triton_server_address: raise ValueError("External Triton gRPC server is not configured!") try: channel = self._ext_grpc.insecure_channel(triton_server_address) grpc_stub = self._ext_service_pb2_grpc.GRPCInferenceServiceStub(channel) except Exception as ex: raise ValueError("External Triton gRPC server misconfigured [{}]: {}".format(triton_server_address, ex)) # Generate the request request = self._ext_service_pb2.ModelInferRequest() request.model_name = "{}/{}".format(self.model_endpoint.serving_url, self.model_endpoint.version).strip("/") # we do not use the Triton model versions, we just assume a single version per endpoint request.model_version = "1" # take the input data input_data = np.array(data, dtype=self.model_endpoint.input_type) # Populate the inputs in inference request input0 = request.InferInputTensor() input0.name = self.model_endpoint.input_name input_dtype = np.dtype(self.model_endpoint.input_type).type input0.datatype = self._ext_np_to_triton_dtype(input_dtype) input0.shape.extend(self.model_endpoint.input_size) # to be inferred input_func = self._content_lookup.get(input_dtype) if not input_func: raise ValueError("Input type nt supported {}".format(input_dtype)) input_func = getattr(input0.contents, input_func) input_func[:] = input_data.flatten() # push into request request.inputs.extend([input0]) # Populate the outputs in the inference request output0 = request.InferRequestedOutputTensor() output0.name = self.model_endpoint.output_name request.outputs.extend([output0]) response = grpc_stub.ModelInfer( request, compression=self._ext_grpc.Compression.Gzip, timeout=self._timeout ) output_results = [] index = 0 for output in response.outputs: shape = [] for value in output.shape: shape.append(value) output_results.append( np.frombuffer(response.raw_output_contents[index], dtype=self.model_endpoint.output_type)) output_results[-1] = np.resize(output_results[-1], shape) index += 1 # if we have a single matrix, return it as is return output_results[0] if index == 1 else output_results @BasePreprocessRequest.register_engine("sklearn", modules=["joblib", "sklearn"]) class SKLearnPreprocessRequest(BasePreprocessRequest): def __init__(self, model_endpoint: ModelEndpoint, task: Task = None): super(SKLearnPreprocessRequest, self).__init__( model_endpoint=model_endpoint, task=task) if self._model is None: # get model import joblib # noqa self._model = joblib.load(filename=self._get_local_model_file()) def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. We run the model in this context """ return self._model.predict(data) @BasePreprocessRequest.register_engine("xgboost", modules=["xgboost"]) class XGBoostPreprocessRequest(BasePreprocessRequest): def __init__(self, model_endpoint: ModelEndpoint, task: Task = None): super(XGBoostPreprocessRequest, self).__init__( model_endpoint=model_endpoint, task=task) if self._model is None: # get model import xgboost # noqa self._model = xgboost.Booster() self._model.load_model(self._get_local_model_file()) def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. We run the model in this context """ return self._model.predict(data) @BasePreprocessRequest.register_engine("lightgbm", modules=["lightgbm"]) class LightGBMPreprocessRequest(BasePreprocessRequest): def __init__(self, model_endpoint: ModelEndpoint, task: Task = None): super(LightGBMPreprocessRequest, self).__init__( model_endpoint=model_endpoint, task=task) if self._model is None: # get model import lightgbm # noqa self._model = lightgbm.Booster(model_file=self._get_local_model_file()) def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. We run the model in this context """ return self._model.predict(data) @BasePreprocessRequest.register_engine("custom") class CustomPreprocessRequest(BasePreprocessRequest): def __init__(self, model_endpoint: ModelEndpoint, task: Task = None): super(CustomPreprocessRequest, self).__init__( model_endpoint=model_endpoint, task=task) def process(self, data: Any, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any: """ The actual processing function. We run the process in this context """ if self._preprocess is not None and hasattr(self._preprocess, 'process'): return self._preprocess.process(data, collect_custom_statistics_fn) return None