# Train and Deploy Keras model with Nvidia Triton Engine ## training mock model Run the mock python training code ```bash python3 train_pytorch_mnist.py ``` The output will be a model created on the project "serving examples", by the name "train pytorch model" *Notice* Only TorchScript models are supported by Triton server ## setting up the serving service 1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID) 2. Create model endpoint: `clearml-serving --id model add --engine triton --endpoint "test_model_pytorch" --preprocess "preprocess.py" --name "train pytorch model" --project "serving examples" --input-size 28 28 1 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32 ` Or auto update `clearml-serving --id model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2 --input-size 28 28 1 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32 ` Or add Canary endpoint `clearml-serving --id model canary --endpoint "test_model_pytorch_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_pytorch_auto` 3. Run the Triton Engine `docker run -v ~/clearml.conf:/root/clearml.conf -p 8001:8001 -e CLEARML_SERVING_TASK_ID= clearml-serving-triton:latest` 4. Configure the Triton Engine IP on the Serving Service (if running on k8s, the gRPC ingest of the triton container) `clearml-serving --id config --triton-grpc-server :8001` 5. Run the clearml-serving container `docker run -v ~/clearml.conf:/root/clearml.conf -p 8001:8001 -e CLEARML_SERVING_TASK_ID= clearml-serving:latest` 6. Test new endpoint: `curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "accept: application/json" -H "Content-Type: application/json" -d '{"url": "https://camo.githubusercontent.com/8385ca52c9cba1f6e629eb938ab725ec8c9449f12db81f9a34e18208cd328ce9/687474703a2f2f706574722d6d6172656b2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f6465636f6d707265737365642e6a7067"}'` > **_Notice:_** You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. ### Running / debugging the serving service manually Once you have setup the Serving Service Task ```bash $ pip3 install -r clearml_serving/serving/requirements.txt $ CLEARML_SERVING_TASK_ID= PYHTONPATH=$(pwd) python3 -m gunicorn \ --preload clearml_serving.serving.main:app \ --workers 4 \ --worker-class uvicorn.workers.UvicornWorker \ --bind 0.0.0.0:8080 ```