# Train and Deploy LightGBM model ## training mock model Run the mock python training code ```bash python3 train_model.py ``` The output will be a model created on the project "serving examples", by the name "train lightgbm model" ## setting up the serving service 1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID) 2. Create model endpoint: 3. `clearml-serving --id model add --engine lightgbm --endpoint "test_model_lgbm" --preprocess "preprocess.py" --name "train lightgbm model" --project "serving examples"` Or auto-update `clearml-serving --id model auto-update --engine lightgbm --endpoint "test_model_auto" --preprocess "preprocess.py" --name "train lightgbm model" --project "serving examples" --max-versions 2` Or add Canary endpoint `clearml-serving --id model canary --endpoint "test_model_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_auto` 4. Run the clearml-serving container `docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID= clearml-serving:latest` 5. Test new endpoint: `curl -X POST "http://127.0.0.1:8080/serve/test_model_lgbm" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2, "x2": 3, "x3": 4}'` > **_Notice:_** You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. ### Running / debugging the serving service manually Once you have setup the Serving Service Task ```bash $ pip3 install -r clearml_serving/serving/requirements.txt $ CLEARML_SERVING_TASK_ID= PYHTONPATH=$(pwd) python3 -m gunicorn \ --preload clearml_serving.serving.main:app \ --workers 4 \ --worker-class uvicorn.workers.UvicornWorker \ --bind 0.0.0.0:8080 ```