from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import VotingRegressor from sklearn.datasets import make_blobs from joblib import dump from clearml import Task task = Task.init(project_name="serving examples", task_name="train model ensemble", output_uri=True) # generate 2d classification dataset X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1) knn = KNeighborsRegressor(n_neighbors=5) knn.fit(X, y) rf = RandomForestRegressor(n_estimators=50) rf.fit(X, y) estimators = [("knn", knn), ("rf", rf), ] ensemble = VotingRegressor(estimators) ensemble.fit(X, y) dump(ensemble, filename="ensemble-vr.pkl", compress=9)