import xgboost as xgb from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from clearml import Task task = Task.init(project_name="serving examples", task_name="train xgboost model", output_uri=True) X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=100 ) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) params = {"objective": "reg:squarederror", "eval_metric": "rmse"} bst = xgb.train( params, dtrain, num_boost_round=100, evals=[(dtrain, "train"), (dtest, "test")], verbose_eval=0, ) bst.save_model("xgb_model")