# Train and Deploy XGBoost model ## training iris classifier model Run the mock python training code ```bash pip install -r examples/xgboost/requirements.txt python examples/xgboost/train_model.py ``` The output will be a model created on the project "serving examples", by the name "train xgboost model" ## setting up the serving service 1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID) 2. Create model endpoint: 3. `clearml-serving --id model add --engine xgboost --endpoint "test_model_xgb" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model - xgb_model" --project "serving examples"` Or auto update `clearml-serving --id model auto-update --engine xgboost --endpoint "test_model_xgb_auto" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model - xgb_model" --project "serving examples" --max-versions 2` Or add Canary endpoint `clearml-serving --id model canary --endpoint "test_model_xgb_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_xgb_auto` 3. If you already have the `clearml-serving` docker-compose running, it might take it a minute or two to sync with the new endpoint. Or you can run the clearml-serving container independently `docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID= clearml-serving:latest` 4. Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory): `curl -X POST "http://127.0.0.1:8080/serve/test_model_xgb" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2, "x2": 3, "x3": 4}'` > **_Notice:_** You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc.