import lightgbm as lgb from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from clearml import Task task = Task.init(project_name="serving examples", task_name="train lightgbm model", output_uri=True) iris = load_iris() y = iris['target'] X = iris['data'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) dtrain = lgb.Dataset(X_train, label=y_train) params = { 'objective': 'multiclass', 'metric': 'softmax', 'num_class': 3 } lgb_model = lgb.train(params=params, train_set=dtrain) lgb_model.save_model("lgbm_model")