"""Hugginface preprocessing module for ClearML Serving.""" from typing import Any # Notice Preprocess class Must be named "Preprocess" class Preprocess: """Processing class will be run by the ClearML inference services before and after each request.""" def __init__(self): """Set internal state, this will be called only once. (i.e. not per request).""" self.model_endpoint = None def load(self, local_file_name: str) -> Optional[Any]: # noqa vllm_engine_config = { "model":f"{local_file_name}/model", "tokenizer":f"{local_file_name}/tokenizer", "disable_log_requests": True, "disable_log_stats": False, "gpu_memory_utilization": 0.9, "quantization": None, "enforce_eager": True, "served_model_name": "ai_operator_hyp22v4" } vllm_model_config = { "lora_modules": None, # [LoRAModulePath(name=a, path=b)] "prompt_adapters": None, # [PromptAdapterPath(name=a, path=b)] "response_role": "assistant", "chat_template": None, "return_tokens_as_token_ids": False, "max_log_len": None } self._model = {} self._model["engine_args"] = AsyncEngineArgs(**vllm_engine_config) self._model["async_engine_client"] = AsyncLLMEngine.from_engine_args(self.engine_args, usage_context=UsageContext.OPENAI_API_SERVER) self._model["model_config"] = self.async_engine_client.engine.get_model_config() self._model["request_logger"] = RequestLogger(max_log_len=vllm_model_config["max_log_len"]) self._model["self.openai_serving_chat"] = OpenAIServingChat( self.async_engine_client, model_config, served_model_names=[vllm_engine_config["served_model_name"]], response_role=vllm_model_config["response_role"], lora_modules=vllm_model_config["lora_modules"], prompt_adapters=vllm_model_config["prompt_adapters"], request_logger=request_logger, chat_template=vllm_model_config["chat_template"], return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"] ) self._model["openai_serving_completion"] = OpenAIServingCompletion( self.async_engine_client, model_config, served_model_names=[vllm_engine_config["served_model_name"]], lora_modules=vllm_model_config["lora_modules"], prompt_adapters=vllm_model_config["prompt_adapters"], request_logger=request_logger, return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"] ) self._model["self.openai_serving_embedding"] = OpenAIServingEmbedding( self.async_engine_client, model_config, served_model_names=[vllm_engine_config["served_model_name"]], request_logger=request_logger ) self._model["self.openai_serving_tokenization"] = OpenAIServingTokenization( self.async_engine_client, model_config, served_model_names=[vllm_engine_config["served_model_name"]], lora_modules=vllm_model_config["lora_modules"], request_logger=request_logger, chat_template=vllm_model_config["chat_template"] )