from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from joblib import dump from clearml import Task task = Task.init(project_name="serving examples", task_name="train sklearn model", output_uri=True) # generate 2d classification dataset X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1) # fit final model model = LogisticRegression() model.fit(X, y) dump(model, filename="sklearn-model.pkl", compress=9)