# Train and Deploy Scikit-Learn model ensemble ## training mock voting regression model Run the mock python training code ```bash pip install -r examples/ensemble/requirements.txt python examples/ensemble/train_ensemble.py ``` The output will be a model created on the project "serving examples", by the name "train model ensemble" ## setting up the serving service 1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID) 2. Create model endpoint: `clearml-serving --id model add --engine sklearn --endpoint "test_model_ensemble" --preprocess "examples/ensemble/preprocess.py" --name "train model ensemble" --project "serving examples"` Or auto update `clearml-serving --id model auto-update --engine sklearn --endpoint "test_model_ensemble_auto" --preprocess "examples/ensemble/preprocess.py" --name "train model ensemble" --project "serving examples" --max-versions 2` Or add Canary endpoint `clearml-serving --id model canary --endpoint "test_model_ensemble_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_ensemble_auto` 3. Run the clearml-serving container `docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID= clearml-serving:latest` 4. Test new endpoint: `curl -X POST "http://127.0.0.1:8080/serve/test_model_ensemble" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'` > **_Notice:_** You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute