fix imports

This commit is contained in:
IlyaMescheryakov1402 2025-03-11 11:45:52 +03:00
parent 9441ae8473
commit 9bb0dbb182
3 changed files with 114 additions and 154 deletions

View File

@ -615,11 +615,38 @@ class VllmEngine(Singleton):
# load vLLM Modules
if self._vllm is None:
from vllm import entrypoints, engine, usage
self._vllm = {}
self._vllm["entrypoints"] = entrypoints
self._vllm["engine"] = engine
self._vllm["usage"] = usage
# from vllm import entrypoints, engine, usage
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import OpenAIServingModels, LoRAModulePath, PromptAdapterPath, BaseModelPath
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_tokenization import OpenAIServingTokenization
from vllm.entrypoints.openai.protocol import ChatCompletionResponse, CompletionResponse, ErrorResponse
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
from vllm.usage.usage_lib import UsageContext
self._vllm = {
"AsyncEngineArgs": AsyncEngineArgs,
"AsyncLLMEngine": AsyncLLMEngine,
"RequestLogger": RequestLogger,
"OpenAIServing": OpenAIServing,
"OpenAIServingModels": OpenAIServingModels,
"LoRAModulePath": LoRAModulePath,
"PromptAdapterPath": PromptAdapterPath,
"BaseModelPath": BaseModelPath,
"OpenAIServingChat": OpenAIServingChat,
"OpenAIServingCompletion": OpenAIServingCompletion,
"OpenAIServingEmbedding": OpenAIServingEmbedding,
"OpenAIServingTokenization": OpenAIServingTokenization,
"ChatCompletionResponse": ChatCompletionResponse,
"CompletionResponse": CompletionResponse,
"ErrorResponse": ErrorResponse,
"ChatTemplateContentFormatOption": ChatTemplateContentFormatOption,
"UsageContext": UsageContext
}
if self._fastapi is None:
from fastapi.responses import JSONResponse, StreamingResponse
@ -647,85 +674,75 @@ class VllmEngine(Singleton):
self.add_models(name=name, model_path=model_path)
return None
vllm_engine_config = json.loads(os.environ.get("VLLM_ENGINE_ARGS"))
engine_args = self._vllm["engine"].arg_utils.AsyncEngineArgs(**vllm_engine_config)
async_engine_client = self._vllm["engine"].async_llm_engine.AsyncLLMEngine.from_engine_args(
vllm_engine_config = json.loads(os.environ.get("VLLM_ENGINE_ARGS").replace("'", ""))
vllm_engine_config["model"] = model_path
vllm_engine_config["served_model_name"] = name
engine_args = self._vllm["AsyncEngineArgs"](**vllm_engine_config)
async_engine_client = self._vllm["AsyncLLMEngine"].from_engine_args(
engine_args,
usage_context=self._vllm["usage"].usage_lib.UsageContext.OPENAI_API_SERVER
usage_context=self._vllm["UsageContext"].OPENAI_API_SERVER
)
model_config = async_engine_client.engine.get_model_config()
request_logger = self._vllm["entrypoints"].logger.RequestLogger(
request_logger = self._vllm["RequestLogger"](
max_log_len=vllm_model_config["max_log_len"]
)
self._model["openai_serving_models"] = self._vllm[
"entrypoints"
].openai.serving_models.OpenAIServingModels(
async_engine_client,
model_config,
[
self._vllm["entrypoints"].openai.serving_models.BaseModelPath(
name=name,
model_path=model_path
)
],
lora_modules=svllm_model_config["lora_modules"],
prompt_adapters=vllm_model_config["prompt_adapters"],
self._model["openai_serving_models"] = self._vllm["OpenAIServingModels"](
async_engine_client,
model_config,
[
self._vllm["BaseModelPath"](
name=name,
model_path=model_path
)
],
lora_modules=vllm_model_config["lora_modules"],
prompt_adapters=vllm_model_config["prompt_adapters"],
)
await self._model["openai_serving_models"].init_static_loras()
self._model["openai_serving"] = self._vllm[
"entrypoints"
].openai.serving_engine.OpenAIServing(
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"]
# await self._model["openai_serving_models"].init_static_loras()
self._model["openai_serving"] = self._vllm["OpenAIServing"](
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"]
)
self._model["openai_serving_chat"] = self._vllm[
"entrypoints"
].openai.serving_chat.OpenAIServingChat(
async_engine_client,
model_config,
self._model["openai_serving_models"],
response_role=vllm_model_config["response_role"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"],
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"],
enable_reasoning=chat_settings["enable_reasoning"],
reasoning_parser=chat_settings["reasoning_parser"],
enable_auto_tools=chat_settings["enable_auto_tools"],
tool_parser=chat_settings["tool_parser"],
enable_prompt_tokens_details=chat_settings["enable_prompt_tokens_details"]
self._model["openai_serving_chat"] = self._vllm["OpenAIServingChat"](
async_engine_client,
model_config,
self._model["openai_serving_models"],
response_role=vllm_model_config["response_role"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"],
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"],
enable_reasoning=chat_settings["enable_reasoning"],
reasoning_parser=chat_settings["reasoning_parser"],
enable_auto_tools=chat_settings["enable_auto_tools"],
tool_parser=chat_settings["tool_parser"],
enable_prompt_tokens_details=chat_settings["enable_prompt_tokens_details"]
) if model_config.runner_type == "generate" else None
self._model["openai_serving_completion"] = self._vllm[
"entrypoints"
].openai.serving_completion.OpenAIServingCompletion(
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"]
self._model["openai_serving_completion"] = self._vllm["OpenAIServingCompletion"](
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
return_tokens_as_token_ids=vllm_model_config["return_tokens_as_token_ids"]
) if model_config.runner_type == "generate" else None
self._model["openai_serving_embedding"] = self._vllm[
"entrypoints"
].openai.serving_embedding.OpenAIServingEmbedding(
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"]
self._model["openai_serving_embedding"] = self._vllm["OpenAIServingEmbedding"](
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"]
) if model_config.task == "embed" else None
self._model["openai_serving_tokenization"] = self._vllm[
"entrypoints"
].openai.serving_tokenization.OpenAIServingTokenization(
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"]
self._model["openai_serving_tokenization"] = self._vllm["OpenAIServingTokenization"](
async_engine_client,
model_config,
self._model["openai_serving_models"],
request_logger=request_logger,
chat_template=vllm_model_config["chat_template"],
chat_template_content_format=chat_settings["chat_template_content_format"]
)
self.logger.info("vLLM Engine was successfully initialized")
self.is_already_loaded = True
@ -733,7 +750,7 @@ class VllmEngine(Singleton):
def add_models(self, name: str, model_path: str):
self._model["openai_serving_models"].base_model_paths.append(
self._vllm["entrypoints"].openai.serving_models.BaseModelPath(
self._vllm["BaseModelPath"](
name=name,
model_path=model_path
)
@ -759,13 +776,12 @@ class VllmEngine(Singleton):
message="The model does not support Completions API"
)
generator = await handler.create_completion(request=request, raw_request=raw_request)
if isinstance(generator, self._vllm["entrypoints"].openai.protocol.ErrorResponse):
if isinstance(generator, self._vllm["ErrorResponse"]):
return self._fastapi["json_response"](content=generator.model_dump(), status_code=generator.code)
elif isinstance(generator, self._vllm["entrypoints"].openai.protocol.CompletionResponse):
elif isinstance(generator, self._vllm["CompletionResponse"]):
return self._fastapi["json_response"](content=generator.model_dump())
return self._fastapi["streaming_response"](content=generator, media_type="text/event-stream")
async def chat_completions(
self,
data: Any,
@ -784,12 +800,20 @@ class VllmEngine(Singleton):
message="The model does not support Chat Completions API"
)
generator = await handler.create_chat_completion(request=request, raw_request=raw_request)
if isinstance(generator, self._vllm["entrypoints"].openai.protocol.ErrorResponse):
if isinstance(generator, self._vllm["ErrorResponse"]):
return self._fastapi["json_response"](content=generator.model_dump(), status_code=generator.code)
elif isinstance(generator, self._vllm["entrypoints"].openai.protocol.ChatCompletionResponse):
elif isinstance(generator, self._vllm["ChatCompletionResponse"]):
return self._fastapi["json_response"](content=generator.model_dump())
return self._fastapi["streaming_response"](content=generator, media_type="text/event-stream")
async def models(
self,
data: Any,
state: dict,
collect_custom_statistics_fn: Callable[[dict], None] = None
) -> Any:
pass
@BasePreprocessRequest.register_engine("vllm", modules=["vllm", "fastapi"])
class VllmPreprocessRequest(BasePreprocessRequest):
@ -881,7 +905,7 @@ class VllmPreprocessRequest(BasePreprocessRequest):
The actual processing function.
We run the process in this context
"""
return self._vllm_engine.completions(data=data, state=state, collect_custom_statistics_fn=collect_custom_statistics_fn)
return await self._vllm_engine.completions(data=data, state=state, collect_custom_statistics_fn=collect_custom_statistics_fn)
async def chat_completions(self, data: Any, state: dict, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any:
@ -889,9 +913,16 @@ class VllmPreprocessRequest(BasePreprocessRequest):
The actual processing function.
We run the process in this context
"""
return self._vllm_engine.chat_completions(data=data, state=state, collect_custom_statistics_fn=collect_custom_statistics_fn)
return await self._vllm_engine.chat_completions(data=data, state=state, collect_custom_statistics_fn=collect_custom_statistics_fn)
async def models(self, data: Any, state: dict, collect_custom_statistics_fn: Callable[[dict], None] = None) -> Any:
"""
The actual processing function.
We run the process in this context
"""
return self._vllm_engine.models(data=data, state=state, collect_custom_statistics_fn=collect_custom_statistics_fn)
@staticmethod
async def _preprocess_send_request(_, endpoint: str, version: str = None, data: dict = None) -> Optional[dict]:
endpoint = "/openai/v1/{}".format(endpoint.strip("/"))

View File

@ -105,7 +105,7 @@ services:
GOOGLE_APPLICATION_CREDENTIALS: ${GOOGLE_APPLICATION_CREDENTIALS:-}
AZURE_STORAGE_ACCOUNT: ${AZURE_STORAGE_ACCOUNT:-}
AZURE_STORAGE_KEY: ${AZURE_STORAGE_KEY:-}
VLLM_ENGINE_ARGS: ${VLLM_ENGINE_ARGS:-'{"disable_log_requests":true,"disable_log_stats":false,"gpu_memory_utilization":0.95,"quantization":null,"enforce_eager":true}'}
VLLM_ENGINE_ARGS: ${VLLM_ENGINE_ARGS:-'{"disable_log_requests":true,"disable_log_stats":false,"gpu_memory_utilization":0.95,"enforce_eager":true}'}
depends_on:
- kafka
networks:

View File

@ -11,18 +11,6 @@ class Preprocess:
def load(self, local_file_name: str) -> Optional[Any]: # noqa
# vllm_engine_config = {
# "model": local_file_name,
# "tokenizer": local_file_name,
# "disable_log_requests": True,
# "disable_log_stats": False,
# "gpu_memory_utilization": 0.9,
# "quantization": None,
# "enforce_eager": True,
# "served_model_name": "test_vllm",
# "dtype": "float16",
# "max_model_len": 8192
# }
vllm_model_config = {
"lora_modules": None, # [LoRAModulePath(name=a, path=b)]
"prompt_adapters": None, # [PromptAdapterPath(name=a, path=b)]
@ -39,66 +27,7 @@ class Preprocess:
"enable_prompt_tokens_details": False,
"chat_template_content_format": "auto"
}
# self._model = {}
# engine_args = AsyncEngineArgs(**self.vllm_engine_config)
# async_engine_client = AsyncLLMEngine.from_engine_args(self.engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
# model_config = async_engine_client.engine.get_model_config()
# request_logger = RequestLogger(max_log_len=self.vllm_model_config["max_log_len"])
# self._model["openai_serving_models"] = OpenAIServingModels(
# async_engine_client,
# self.model_config,
# [BaseModelPath(name=self.vllm_engine_config["served_model_name"], model_path=self.vllm_engine_config["model"])],
# lora_modules=self.vllm_model_config["lora_modules"],
# prompt_adapters=self.vllm_model_config["prompt_adapters"],
# )
# self._model["openai_serving"] = OpenAIServing(
# async_engine_client,
# self.model_config,
# self._model["openai_serving_models"],
# request_logger=request_logger,
# return_tokens_as_token_ids=self.vllm_model_config["return_tokens_as_token_ids"]
# )
# self._model["openai_serving_chat"] = OpenAIServingChat(
# async_engine_client,
# self.model_config,
# self._model["openai_serving_models"],
# response_role=self.vllm_model_config["response_role"],
# request_logger=request_logger,
# chat_template=self.vllm_model_config["chat_template"],
# chat_template_content_format=self.chat_settings["chat_template_content_format"],
# return_tokens_as_token_ids=self.vllm_model_config["return_tokens_as_token_ids"],
# enable_reasoning=self.chat_settings["enable_reasoning"],
# reasoning_parser=self.chat_settings["reasoning_parser"],
# enable_auto_tools=self.chat_settings["enable_auto_tools"],
# tool_parser=self.chat_settings["tool_parser"],
# enable_prompt_tokens_details=self.chat_settings["enable_prompt_tokens_details"]
# ) if self.model_config.runner_type == "generate" else None
# self._model["openai_serving_completion"] = OpenAIServingCompletion(
# async_engine_client,
# self.model_config,
# self._model["openai_serving_models"],
# request_logger=request_logger,
# return_tokens_as_token_ids=self.vllm_model_config["return_tokens_as_token_ids"]
# ) if self.model_config.runner_type == "generate" else None
# self._model["openai_serving_embedding"] = OpenAIServingEmbedding(
# async_engine_client,
# self.model_config,
# self._model["openai_serving_models"],
# request_logger=request_logger,
# chat_template=self.vllm_model_config["chat_template"],
# chat_template_content_format=self.chat_settings["chat_template_content_format"]
# ) if self.model_config.task == "embed" else None
# self._model["openai_serving_tokenization"] = OpenAIServingTokenization(
# async_engine_client,
# self.model_config,
# self._model["openai_serving_models"],
# request_logger=request_logger,
# chat_template=self.vllm_model_config["chat_template"],
# chat_template_content_format=self.chat_settings["chat_template_content_format"]
# )
# return self._model
return {
# "vllm_engine_config": vllm_engine_config,
"vllm_model_config": vllm_model_config,
"chat_settings": chat_settings
}