mirror of
https://github.com/clearml/clearml-serving
synced 2025-06-26 18:16:00 +00:00
[DEV] feature/bytes-payload | Add examples
This commit is contained in:
parent
d89d1370d8
commit
29c9732e8e
@ -1,4 +1,5 @@
|
|||||||
from typing import Any
|
import io
|
||||||
|
from typing import Any, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageOps
|
from PIL import Image, ImageOps
|
||||||
@ -13,16 +14,22 @@ class Preprocess(object):
|
|||||||
# set internal state, this will be called only once. (i.e. not per request)
|
# set internal state, this will be called only once. (i.e. not per request)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def preprocess(self, body: dict, state: dict, collect_custom_statistics_fn=None) -> Any:
|
def preprocess(self, body: Union[bytes, dict], state: dict, collect_custom_statistics_fn=None) -> Any:
|
||||||
# we expect to get two valid on the dict x0, and x1
|
# we expect to get two valid on the dict x0, and x1
|
||||||
url = body.get("url")
|
if isinstance(body, bytes):
|
||||||
if not url:
|
# we expect to get a stream of encoded image bytes
|
||||||
raise ValueError("'url' entry not provided, expected http/s link to image")
|
try:
|
||||||
|
image = Image.open(io.BytesIO(body)).convert("RGB")
|
||||||
|
except Exception:
|
||||||
|
raise ValueError("Image could not be decoded")
|
||||||
|
|
||||||
local_file = StorageManager.get_local_copy(remote_url=url)
|
if isinstance(body, dict) and "url" in body.keys():
|
||||||
image = Image.open(local_file)
|
# image is given as url, and is fetched
|
||||||
|
url = body.get("url")
|
||||||
|
local_file = StorageManager.get_local_copy(remote_url=url)
|
||||||
|
image = Image.open(local_file)
|
||||||
|
|
||||||
image = ImageOps.grayscale(image).resize((28, 28))
|
image = ImageOps.grayscale(image).resize((28, 28))
|
||||||
|
|
||||||
return np.array([np.array(image).flatten()])
|
return np.array([np.array(image).flatten()])
|
||||||
|
|
||||||
def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
|
def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
from typing import Any
|
import io
|
||||||
|
from typing import Any, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageOps
|
from PIL import Image, ImageOps
|
||||||
@ -13,16 +14,23 @@ class Preprocess(object):
|
|||||||
# set internal state, this will be called only once. (i.e. not per request)
|
# set internal state, this will be called only once. (i.e. not per request)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def preprocess(self, body: dict, state: dict, collect_custom_statistics_fn=None) -> Any:
|
def preprocess(self, body: Union[bytes, dict], state: dict, collect_custom_statistics_fn=None) -> Any:
|
||||||
# we expect to get two valid on the dict x0, and x1
|
# we expect to get two valid on the dict x0, and x1
|
||||||
url = body.get("url")
|
if isinstance(body, bytes):
|
||||||
if not url:
|
# we expect to get a stream of encoded image bytes
|
||||||
raise ValueError("'url' entry not provided, expected http/s link to image")
|
try:
|
||||||
|
image = Image.open(io.BytesIO(body)).convert("RGB")
|
||||||
|
except Exception:
|
||||||
|
raise ValueError("Image could not be decoded")
|
||||||
|
|
||||||
local_file = StorageManager.get_local_copy(remote_url=url)
|
if isinstance(body, dict) and "url" in body.keys():
|
||||||
image = Image.open(local_file)
|
# image is given as url, and is fetched
|
||||||
|
url = body.get("url")
|
||||||
|
local_file = StorageManager.get_local_copy(remote_url=url)
|
||||||
|
image = Image.open(local_file)
|
||||||
|
|
||||||
image = ImageOps.grayscale(image).resize((28, 28))
|
image = ImageOps.grayscale(image).resize((28, 28))
|
||||||
return np.array([np.array(image)])
|
return np.array([np.array(image).flatten()])
|
||||||
|
|
||||||
def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
|
def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
|
||||||
# post process the data returned from the model inference engine
|
# post process the data returned from the model inference engine
|
||||||
|
Loading…
Reference in New Issue
Block a user