clearml-serving/examples/xgboost/train_model.py

29 lines
695 B
Python
Raw Normal View History

import xgboost as xgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from clearml import Task
task = Task.init(project_name="serving examples", task_name="train xgboost model", output_uri=True)
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=100
)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
params = {"objective": "reg:squarederror", "eval_metric": "rmse"}
bst = xgb.train(
params,
dtrain,
num_boost_round=100,
evals=[(dtrain, "train"), (dtest, "test")],
verbose_eval=0,
)
bst.save_model("xgb_model")