mirror of
https://github.com/clearml/clearml-serving
synced 2025-01-31 10:56:52 +00:00
41 lines
1.8 KiB
Markdown
41 lines
1.8 KiB
Markdown
|
# Train and Deploy XGBoost model
|
||
|
|
||
|
## training mock model
|
||
|
|
||
|
Run the mock python training code
|
||
|
```bash
|
||
|
python3 train_model.py
|
||
|
```
|
||
|
|
||
|
The output will be a model created on the project "serving examples", by the name "train xgboost model"
|
||
|
|
||
|
## setting up the serving service
|
||
|
|
||
|
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
||
|
2. Create model endpoint:
|
||
|
|
||
|
3. `clearml-serving --id <service_id> model add --engine xgboost --endpoint "test_model_xgb" --preprocess "preprocess.py" --name "train xgboost model" --project "serving examples"`
|
||
|
Or auto update
|
||
|
`clearml-serving --id <service_id> model auto-update --engine xgboost --endpoint "test_model_xgb_auto" --preprocess "preprocess.py" --name "train xgboost model" --project "serving examples" --max-versions 2`
|
||
|
Or add Canary endpoint
|
||
|
`clearml-serving --id <service_id> model canary --endpoint "test_model_xgb_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_xgb_auto`
|
||
|
|
||
|
4. Run the clearml-serving container `docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest`
|
||
|
5. Test new endpoint: `curl -X POST "http://127.0.0.1:8080/serve/test_model_xgb" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2, "x2": 3, "x3": 4}'`
|
||
|
|
||
|
> **_Notice:_** You can also change the serving service while it is already running!
|
||
|
This includes adding/removing endpoints, adding canary model routing etc.
|
||
|
|
||
|
|
||
|
### Running / debugging the serving service manually
|
||
|
Once you have setup the Serving Service Task
|
||
|
|
||
|
```bash
|
||
|
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||
|
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||
|
--preload clearml_serving.serving.main:app \
|
||
|
--workers 4 \
|
||
|
--worker-class uvicorn.workers.UvicornWorker \
|
||
|
--bind 0.0.0.0:8080
|
||
|
```
|