mirror of
https://github.com/clearml/clearml-server
synced 2025-01-31 19:06:55 +00:00
323b5db07c
Remove untracked files
445 lines
16 KiB
Python
445 lines
16 KiB
Python
import json
|
|
import operator
|
|
import unittest
|
|
from statistics import mean
|
|
from typing import Sequence, Optional, Tuple
|
|
|
|
from boltons.iterutils import first
|
|
|
|
from apiserver.es_factory import es_factory
|
|
from apiserver.apierrors.errors.bad_request import EventsNotAdded
|
|
from apiserver.tests.automated import TestService
|
|
|
|
|
|
class TestTaskEvents(TestService):
|
|
def setUp(self, version="2.9"):
|
|
super().setUp(version=version)
|
|
|
|
def _temp_task(self, name="test task events"):
|
|
task_input = dict(
|
|
name=name, type="training", input=dict(mapping={}, view=dict(entries=[])),
|
|
)
|
|
return self.create_temp("tasks", **task_input)
|
|
|
|
@staticmethod
|
|
def _create_task_event(type_, task, iteration, **kwargs):
|
|
return {
|
|
"worker": "test",
|
|
"type": type_,
|
|
"task": task,
|
|
"iter": iteration,
|
|
"timestamp": kwargs.get("timestamp") or es_factory.get_timestamp_millis(),
|
|
**kwargs,
|
|
}
|
|
|
|
def test_task_metrics(self):
|
|
tasks = {
|
|
self._temp_task(): {
|
|
"Metric1": ["training_debug_image"],
|
|
"Metric2": ["training_debug_image", "log"],
|
|
},
|
|
self._temp_task(): {"Metric3": ["training_debug_image"]},
|
|
}
|
|
events = [
|
|
self._create_task_event(
|
|
event_type,
|
|
task=task,
|
|
iteration=1,
|
|
metric=metric,
|
|
variant="Test variant",
|
|
)
|
|
for task, metrics in tasks.items()
|
|
for metric, event_types in metrics.items()
|
|
for event_type in event_types
|
|
]
|
|
self.send_batch(events)
|
|
self._assert_task_metrics(tasks, "training_debug_image")
|
|
self._assert_task_metrics(tasks, "log")
|
|
self._assert_task_metrics(tasks, "training_stats_scalar")
|
|
|
|
def _assert_task_metrics(self, tasks: dict, event_type: str):
|
|
res = self.api.events.get_task_metrics(tasks=list(tasks), event_type=event_type)
|
|
for task, metrics in tasks.items():
|
|
res_metrics = next(
|
|
(tm.metrics for tm in res.metrics if tm.task == task), ()
|
|
)
|
|
self.assertEqual(
|
|
set(res_metrics),
|
|
set(
|
|
metric for metric, events in metrics.items() if event_type in events
|
|
),
|
|
)
|
|
|
|
def test_last_scalar_metrics(self):
|
|
metric = "Metric1"
|
|
variant = "Variant1"
|
|
iter_count = 100
|
|
task = self._temp_task()
|
|
events = [
|
|
{
|
|
**self._create_task_event("training_stats_scalar", task, iteration),
|
|
"metric": metric,
|
|
"variant": variant,
|
|
"value": iteration,
|
|
}
|
|
for iteration in range(iter_count)
|
|
]
|
|
# send 2 batches to check the interaction with already stored db value
|
|
# each batch contains multiple iterations
|
|
self.send_batch(events[:50])
|
|
self.send_batch(events[50:])
|
|
|
|
task_data = self.api.tasks.get_by_id(task=task).task
|
|
metric_data = first(first(task_data.last_metrics.values()).values())
|
|
self.assertEqual(iter_count - 1, metric_data.value)
|
|
self.assertEqual(iter_count - 1, metric_data.max_value)
|
|
self.assertEqual(0, metric_data.min_value)
|
|
|
|
def test_error_events(self):
|
|
task = self._temp_task()
|
|
events = [
|
|
self._create_task_event("unknown type", task, iteration=1),
|
|
self._create_task_event("training_debug_image", task=None, iteration=1),
|
|
self._create_task_event(
|
|
"training_debug_image", task="Invalid task", iteration=1
|
|
),
|
|
]
|
|
# failure if no events added
|
|
with self.api.raises(EventsNotAdded):
|
|
self.send_batch(events)
|
|
|
|
events.append(
|
|
self._create_task_event("training_debug_image", task=task, iteration=1)
|
|
)
|
|
# success if at least one event added
|
|
res = self.send_batch(events)
|
|
self.assertEqual(res["added"], 1)
|
|
self.assertEqual(res["errors"], 3)
|
|
self.assertEqual(len(res["errors_info"]), 3)
|
|
res = self.api.events.get_task_events(task=task)
|
|
self.assertEqual(len(res.events), 1)
|
|
|
|
def test_task_logs(self):
|
|
task = self._temp_task()
|
|
timestamp = es_factory.get_timestamp_millis()
|
|
events = [
|
|
self._create_task_event(
|
|
"log",
|
|
task=task,
|
|
iteration=iter_,
|
|
timestamp=timestamp + iter_ * 1000,
|
|
msg=f"This is a log message from test task iter {iter_}",
|
|
)
|
|
for iter_ in range(10)
|
|
]
|
|
self.send_batch(events)
|
|
|
|
# test forward navigation
|
|
ftime, ltime = None, None
|
|
for page in range(2):
|
|
ftime, ltime = self._assert_log_events(
|
|
task=task, timestamp=ltime, expected_page=page
|
|
)
|
|
|
|
# test backwards navigation
|
|
self._assert_log_events(task=task, timestamp=ftime, navigate_earlier=False)
|
|
|
|
# test order
|
|
self._assert_log_events(task=task, order="asc")
|
|
|
|
def _assert_log_events(
|
|
self,
|
|
task,
|
|
batch_size: int = 5,
|
|
timestamp: Optional[int] = None,
|
|
expected_total: int = 10,
|
|
expected_page: int = 0,
|
|
**extra_params,
|
|
) -> Tuple[int, int]:
|
|
res = self.api.events.get_task_log(
|
|
task=task, batch_size=batch_size, from_timestamp=timestamp, **extra_params,
|
|
)
|
|
self.assertEqual(res.total, expected_total)
|
|
expected_events = max(
|
|
0, batch_size - max(0, (expected_page + 1) * batch_size - expected_total)
|
|
)
|
|
self.assertEqual(res.returned, expected_events)
|
|
self.assertEqual(len(res.events), expected_events)
|
|
unique_events = len({ev.iter for ev in res.events})
|
|
self.assertEqual(len(res.events), unique_events)
|
|
if res.events:
|
|
cmp_operator = operator.ge
|
|
if (
|
|
not extra_params.get("navigate_earlier", True)
|
|
or extra_params.get("order", None) == "asc"
|
|
):
|
|
cmp_operator = operator.le
|
|
self.assertTrue(
|
|
all(
|
|
cmp_operator(first.timestamp, second.timestamp)
|
|
for first, second in zip(res.events, res.events[1:])
|
|
)
|
|
)
|
|
|
|
return (
|
|
(res.events[0].timestamp, res.events[-1].timestamp)
|
|
if res.events
|
|
else (None, None)
|
|
)
|
|
|
|
def test_task_metric_value_intervals_keys(self):
|
|
metric = "Metric1"
|
|
variant = "Variant1"
|
|
iter_count = 100
|
|
task = self._temp_task()
|
|
events = [
|
|
{
|
|
**self._create_task_event("training_stats_scalar", task, iteration),
|
|
"metric": metric,
|
|
"variant": variant,
|
|
"value": iteration,
|
|
}
|
|
for iteration in range(iter_count)
|
|
]
|
|
self.send_batch(events)
|
|
for key in None, "iter", "timestamp", "iso_time":
|
|
with self.subTest(key=key):
|
|
data = self.api.events.scalar_metrics_iter_histogram(task=task, key=key)
|
|
self.assertIn(metric, data)
|
|
self.assertIn(variant, data[metric])
|
|
self.assertIn("x", data[metric][variant])
|
|
self.assertIn("y", data[metric][variant])
|
|
|
|
def test_multitask_events_many_metrics(self):
|
|
tasks = [
|
|
self._temp_task(name="test events1"),
|
|
self._temp_task(name="test events2"),
|
|
]
|
|
iter_count = 10
|
|
metrics_count = 10
|
|
variants_count = 10
|
|
events = [
|
|
{
|
|
**self._create_task_event("training_stats_scalar", task, iteration),
|
|
"metric": f"Metric{metric_idx}",
|
|
"variant": f"Variant{variant_idx}",
|
|
"value": iteration,
|
|
}
|
|
for iteration in range(iter_count)
|
|
for task in tasks
|
|
for metric_idx in range(metrics_count)
|
|
for variant_idx in range(variants_count)
|
|
]
|
|
self.send_batch(events)
|
|
data = self.api.events.multi_task_scalar_metrics_iter_histogram(tasks=tasks)
|
|
self._assert_metrics_and_variants(
|
|
data.metrics,
|
|
metrics=metrics_count,
|
|
variants=variants_count,
|
|
tasks=tasks,
|
|
iterations=iter_count,
|
|
)
|
|
|
|
def _assert_metrics_and_variants(
|
|
self, data: dict, metrics: int, variants: int, tasks: Sequence, iterations: int
|
|
):
|
|
self.assertEqual(len(data), metrics)
|
|
for m in range(metrics):
|
|
metric_data = data[f"Metric{m}"]
|
|
self.assertEqual(len(metric_data), variants)
|
|
for v in range(variants):
|
|
variant_data = metric_data[f"Variant{v}"]
|
|
self.assertEqual(len(variant_data), len(tasks))
|
|
for t in tasks:
|
|
task_data = variant_data[t]
|
|
self.assertEqual(len(task_data["x"]), iterations)
|
|
self.assertEqual(len(task_data["y"]), iterations)
|
|
|
|
def test_task_metric_value_intervals(self):
|
|
metric = "Metric1"
|
|
variant = "Variant1"
|
|
iter_count = 100
|
|
task = self._temp_task()
|
|
events = [
|
|
{
|
|
**self._create_task_event("training_stats_scalar", task, iteration),
|
|
"metric": metric,
|
|
"variant": variant,
|
|
"value": iteration,
|
|
}
|
|
for iteration in range(iter_count)
|
|
]
|
|
self.send_batch(events)
|
|
|
|
data = self.api.events.scalar_metrics_iter_histogram(task=task)
|
|
self._assert_metrics_histogram(data[metric][variant], iter_count, 100)
|
|
|
|
data = self.api.events.scalar_metrics_iter_histogram(task=task, samples=100)
|
|
self._assert_metrics_histogram(data[metric][variant], iter_count, 100)
|
|
|
|
data = self.api.events.scalar_metrics_iter_histogram(task=task, samples=10)
|
|
self._assert_metrics_histogram(data[metric][variant], iter_count, 10)
|
|
|
|
def _assert_metrics_histogram(self, data, iters, samples):
|
|
interval = iters // samples
|
|
self.assertEqual(len(data["x"]), samples)
|
|
self.assertEqual(len(data["y"]), samples)
|
|
for curr in range(samples):
|
|
self.assertEqual(data["x"][curr], curr * interval)
|
|
self.assertEqual(
|
|
data["y"][curr],
|
|
mean(v for v in range(curr * interval, (curr + 1) * interval)),
|
|
)
|
|
|
|
def test_task_plots(self):
|
|
task = self._temp_task()
|
|
event = self._create_task_event("plot", task, 0)
|
|
event["metric"] = "roc"
|
|
event.update(
|
|
{
|
|
"plot_str": json.dumps(
|
|
{
|
|
"data": [
|
|
{
|
|
"x": [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
|
"y": [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
|
"text": [
|
|
"Th=0.1",
|
|
"Th=0.2",
|
|
"Th=0.3",
|
|
"Th=0.4",
|
|
"Th=0.5",
|
|
"Th=0.6",
|
|
"Th=0.7",
|
|
"Th=0.8",
|
|
],
|
|
"name": "class1",
|
|
},
|
|
{
|
|
"x": [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
|
"y": [2.0, 3.0, 5.0, 8.2, 6.4, 7.5, 9.2, 8.1, 10.0],
|
|
"text": [
|
|
"Th=0.1",
|
|
"Th=0.2",
|
|
"Th=0.3",
|
|
"Th=0.4",
|
|
"Th=0.5",
|
|
"Th=0.6",
|
|
"Th=0.7",
|
|
"Th=0.8",
|
|
],
|
|
"name": "class2",
|
|
},
|
|
],
|
|
"layout": {
|
|
"title": "ROC for iter 0",
|
|
"xaxis": {"title": "my x axis"},
|
|
"yaxis": {"title": "my y axis"},
|
|
},
|
|
}
|
|
)
|
|
}
|
|
)
|
|
self.send(event)
|
|
|
|
event1 = self._create_task_event("plot", task, 100)
|
|
event1["metric"] = "confusion"
|
|
event1.update(
|
|
{
|
|
"plot_str": json.dumps(
|
|
{
|
|
"data": [
|
|
{
|
|
"y": [
|
|
"lying",
|
|
"sitting",
|
|
"standing",
|
|
"people",
|
|
"backgroun",
|
|
],
|
|
"x": [
|
|
"lying",
|
|
"sitting",
|
|
"standing",
|
|
"people",
|
|
"backgroun",
|
|
],
|
|
"z": [
|
|
[758, 163, 0, 0, 23],
|
|
[63, 858, 3, 0, 0],
|
|
[0, 50, 188, 21, 35],
|
|
[0, 22, 8, 40, 4],
|
|
[12, 91, 26, 29, 368],
|
|
],
|
|
"type": "heatmap",
|
|
}
|
|
],
|
|
"layout": {
|
|
"title": "Confusion Matrix for iter 100",
|
|
"xaxis": {"title": "Predicted value"},
|
|
"yaxis": {"title": "Real value"},
|
|
},
|
|
}
|
|
)
|
|
}
|
|
)
|
|
self.send(event1)
|
|
|
|
plots = self.api.events.get_task_plots(task=task).plots
|
|
self.assertEqual(
|
|
{e["plot_str"] for e in (event, event1)}, {p.plot_str for p in plots}
|
|
)
|
|
|
|
self.api.tasks.reset(task=task)
|
|
plots = self.api.events.get_task_plots(task=task).plots
|
|
self.assertEqual(len(plots), 0)
|
|
|
|
@unittest.skip("this test will run only if 'validate_plot_str' is set to true")
|
|
def test_plots_validation(self):
|
|
valid_plot_str = json.dumps({"data": []})
|
|
invalid_plot_str = "Not a valid json"
|
|
task = self._temp_task()
|
|
|
|
event = self._create_task_event(
|
|
"plot", task, 0, metric="test1", plot_str=valid_plot_str
|
|
)
|
|
event1 = self._create_task_event(
|
|
"plot", task, 100, metric="test2", plot_str=invalid_plot_str
|
|
)
|
|
self.send_batch([event, event1])
|
|
res = self.api.events.get_task_plots(task=task).plots
|
|
self.assertEqual(len(res), 1)
|
|
self.assertEqual(res[0].metric, "test1")
|
|
|
|
event = self._create_task_event(
|
|
"plot",
|
|
task,
|
|
0,
|
|
metric="test1",
|
|
plot_str=valid_plot_str,
|
|
skip_validation=True,
|
|
)
|
|
event1 = self._create_task_event(
|
|
"plot",
|
|
task,
|
|
100,
|
|
metric="test2",
|
|
plot_str=invalid_plot_str,
|
|
skip_validation=True,
|
|
)
|
|
self.send_batch([event, event1])
|
|
res = self.api.events.get_task_plots(task=task).plots
|
|
self.assertEqual(len(res), 2)
|
|
self.assertEqual(set(r.metric for r in res), {"test1", "test2"})
|
|
|
|
def send_batch(self, events):
|
|
_, data = self.api.send_batch("events.add_batch", events)
|
|
return data
|
|
|
|
def send(self, event):
|
|
self.api.send("events.add", event)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|