mirror of
https://github.com/clearml/clearml-server
synced 2025-06-26 23:15:47 +00:00
Rename server to apiserver
This commit is contained in:
1
apiserver/bll/queue/__init__.py
Normal file
1
apiserver/bll/queue/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .queue_bll import QueueBLL
|
||||
270
apiserver/bll/queue/queue_bll.py
Normal file
270
apiserver/bll/queue/queue_bll.py
Normal file
@@ -0,0 +1,270 @@
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from typing import Callable, Sequence, Optional, Tuple
|
||||
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
import database
|
||||
import es_factory
|
||||
from apierrors import errors
|
||||
from bll.queue.queue_metrics import QueueMetrics
|
||||
from bll.workers import WorkerBLL
|
||||
from config import config
|
||||
from database.errors import translate_errors_context
|
||||
from database.model.queue import Queue, Entry
|
||||
|
||||
log = config.logger(__file__)
|
||||
|
||||
|
||||
class QueueBLL(object):
|
||||
def __init__(self, worker_bll: WorkerBLL = None, es: Elasticsearch = None):
|
||||
self.worker_bll = worker_bll or WorkerBLL()
|
||||
self.es = es or es_factory.connect("workers")
|
||||
self._metrics = QueueMetrics(self.es)
|
||||
|
||||
@property
|
||||
def metrics(self) -> QueueMetrics:
|
||||
return self._metrics
|
||||
|
||||
@staticmethod
|
||||
def create(
|
||||
company_id: str,
|
||||
name: str,
|
||||
tags: Optional[Sequence[str]] = None,
|
||||
system_tags: Optional[Sequence[str]] = None,
|
||||
) -> Queue:
|
||||
"""Creates a queue"""
|
||||
with translate_errors_context():
|
||||
now = datetime.utcnow()
|
||||
queue = Queue(
|
||||
id=database.utils.id(),
|
||||
company=company_id,
|
||||
created=now,
|
||||
name=name,
|
||||
tags=tags or [],
|
||||
system_tags=system_tags or [],
|
||||
last_update=now,
|
||||
)
|
||||
queue.save()
|
||||
return queue
|
||||
|
||||
def get_by_id(
|
||||
self, company_id: str, queue_id: str, only: Optional[Sequence[str]] = None
|
||||
) -> Queue:
|
||||
"""
|
||||
Get queue by id
|
||||
:raise errors.bad_request.InvalidQueueId: if the queue is not found
|
||||
"""
|
||||
with translate_errors_context():
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
qs = Queue.objects(**query)
|
||||
if only:
|
||||
qs = qs.only(*only)
|
||||
queue = qs.first()
|
||||
if not queue:
|
||||
raise errors.bad_request.InvalidQueueId(**query)
|
||||
|
||||
return queue
|
||||
|
||||
@classmethod
|
||||
def get_queue_with_task(cls, company_id: str, queue_id: str, task_id: str) -> Queue:
|
||||
with translate_errors_context():
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
queue = Queue.objects(entries__task=task_id, **query).first()
|
||||
if not queue:
|
||||
raise errors.bad_request.InvalidQueueOrTaskNotQueued(
|
||||
task=task_id, **query
|
||||
)
|
||||
|
||||
return queue
|
||||
|
||||
def get_default(self, company_id: str) -> Queue:
|
||||
"""
|
||||
Get the default queue
|
||||
:raise errors.bad_request.NoDefaultQueue: if the default queue not found
|
||||
:raise errors.bad_request.MultipleDefaultQueues: if more than one default queue is found
|
||||
"""
|
||||
with translate_errors_context():
|
||||
res = Queue.objects(company=company_id, system_tags="default").only(
|
||||
"id", "name"
|
||||
)
|
||||
if not res:
|
||||
raise errors.bad_request.NoDefaultQueue()
|
||||
if len(res) > 1:
|
||||
raise errors.bad_request.MultipleDefaultQueues(
|
||||
queues=tuple(r.id for r in res)
|
||||
)
|
||||
|
||||
return res.first()
|
||||
|
||||
def update(
|
||||
self, company_id: str, queue_id: str, **update_fields
|
||||
) -> Tuple[int, dict]:
|
||||
"""
|
||||
Partial update of the queue from update_fields
|
||||
:raise errors.bad_request.InvalidQueueId: if the queue is not found
|
||||
:return: number of updated objects and updated fields dictionary
|
||||
"""
|
||||
with translate_errors_context():
|
||||
# validate the queue exists
|
||||
self.get_by_id(company_id=company_id, queue_id=queue_id, only=("id",))
|
||||
return Queue.safe_update(company_id, queue_id, update_fields)
|
||||
|
||||
def delete(self, company_id: str, queue_id: str, force: bool) -> None:
|
||||
"""
|
||||
Delete the queue
|
||||
:raise errors.bad_request.InvalidQueueId: if the queue is not found
|
||||
:raise errors.bad_request.QueueNotEmpty: if the queue is not empty and 'force' not set
|
||||
"""
|
||||
with translate_errors_context():
|
||||
queue = self.get_by_id(company_id=company_id, queue_id=queue_id)
|
||||
if queue.entries and not force:
|
||||
raise errors.bad_request.QueueNotEmpty(
|
||||
"use force=true to delete", id=queue_id
|
||||
)
|
||||
queue.delete()
|
||||
|
||||
def get_all(self, company_id: str, query_dict: dict) -> Sequence[dict]:
|
||||
"""Get all the queues according to the query"""
|
||||
with translate_errors_context():
|
||||
return Queue.get_many(
|
||||
company=company_id, parameters=query_dict, query_dict=query_dict
|
||||
)
|
||||
|
||||
def get_queue_infos(self, company_id: str, query_dict: dict) -> Sequence[dict]:
|
||||
"""
|
||||
Get infos on all the company queues, including queue tasks and workers
|
||||
"""
|
||||
projection = Queue.get_extra_projection("entries.task.name")
|
||||
with translate_errors_context():
|
||||
res = Queue.get_many_with_join(
|
||||
company=company_id,
|
||||
query_dict=query_dict,
|
||||
override_projection=projection,
|
||||
)
|
||||
|
||||
queue_workers = defaultdict(list)
|
||||
for worker in self.worker_bll.get_all(company_id):
|
||||
for queue in worker.queues:
|
||||
queue_workers[queue].append(worker)
|
||||
|
||||
for item in res:
|
||||
item["workers"] = [
|
||||
{
|
||||
"name": w.id,
|
||||
"ip": w.ip,
|
||||
"task": w.task.to_struct() if w.task else None,
|
||||
}
|
||||
for w in queue_workers.get(item["id"], [])
|
||||
]
|
||||
|
||||
return res
|
||||
|
||||
def add_task(self, company_id: str, queue_id: str, task_id: str) -> dict:
|
||||
"""
|
||||
Add the task to the queue and return the queue update results
|
||||
:raise errors.bad_request.TaskAlreadyQueued: if the task is already in the queue
|
||||
:raise errors.bad_request.InvalidQueueOrTaskNotQueued: if the queue update operation failed
|
||||
"""
|
||||
with translate_errors_context():
|
||||
queue = self.get_by_id(company_id=company_id, queue_id=queue_id)
|
||||
if any(e.task == task_id for e in queue.entries):
|
||||
raise errors.bad_request.TaskAlreadyQueued(task=task_id)
|
||||
|
||||
self.metrics.log_queue_metrics_to_es(company_id=company_id, queues=[queue])
|
||||
|
||||
entry = Entry(added=datetime.utcnow(), task=task_id)
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
res = Queue.objects(entries__task__ne=task_id, **query).update_one(
|
||||
push__entries=entry, last_update=datetime.utcnow(), upsert=False
|
||||
)
|
||||
if not res:
|
||||
raise errors.bad_request.InvalidQueueOrTaskNotQueued(
|
||||
task=task_id, **query
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
def get_next_task(self, company_id: str, queue_id: str) -> Optional[Entry]:
|
||||
"""
|
||||
Atomically pop and return the first task from the queue (or None)
|
||||
:raise errors.bad_request.InvalidQueueId: if the queue does not exist
|
||||
"""
|
||||
with translate_errors_context():
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
queue = Queue.objects(**query).modify(pop__entries=-1, upsert=False)
|
||||
if not queue:
|
||||
raise errors.bad_request.InvalidQueueId(**query)
|
||||
|
||||
self.metrics.log_queue_metrics_to_es(company_id, queues=[queue])
|
||||
|
||||
if not queue.entries:
|
||||
return
|
||||
|
||||
try:
|
||||
Queue.objects(**query).update(last_update=datetime.utcnow())
|
||||
except Exception:
|
||||
log.exception("Error while updating Queue.last_update")
|
||||
|
||||
return queue.entries[0]
|
||||
|
||||
def remove_task(self, company_id: str, queue_id: str, task_id: str) -> int:
|
||||
"""
|
||||
Removes the task from the queue and returns the number of removed items
|
||||
:raise errors.bad_request.InvalidQueueOrTaskNotQueued: if the task is not found in the queue
|
||||
"""
|
||||
with translate_errors_context():
|
||||
queue = self.get_queue_with_task(
|
||||
company_id=company_id, queue_id=queue_id, task_id=task_id
|
||||
)
|
||||
self.metrics.log_queue_metrics_to_es(company_id, queues=[queue])
|
||||
|
||||
entries_to_remove = [e for e in queue.entries if e.task == task_id]
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
res = Queue.objects(entries__task=task_id, **query).update_one(
|
||||
pull_all__entries=entries_to_remove, last_update=datetime.utcnow()
|
||||
)
|
||||
|
||||
return len(entries_to_remove) if res else 0
|
||||
|
||||
def reposition_task(
|
||||
self,
|
||||
company_id: str,
|
||||
queue_id: str,
|
||||
task_id: str,
|
||||
pos_func: Callable[[int], int],
|
||||
) -> int:
|
||||
"""
|
||||
Moves the task in the queue to the position calculated by pos_func
|
||||
Returns the updated task position in the queue
|
||||
"""
|
||||
with translate_errors_context():
|
||||
queue = self.get_queue_with_task(
|
||||
company_id=company_id, queue_id=queue_id, task_id=task_id
|
||||
)
|
||||
|
||||
position = next(i for i, e in enumerate(queue.entries) if e.task == task_id)
|
||||
new_position = pos_func(position)
|
||||
|
||||
if new_position != position:
|
||||
entry = queue.entries[position]
|
||||
query = dict(id=queue_id, company=company_id)
|
||||
updated = Queue.objects(entries__task=task_id, **query).update_one(
|
||||
pull__entries=entry, last_update=datetime.utcnow()
|
||||
)
|
||||
if not updated:
|
||||
raise errors.bad_request.RemovedDuringReposition(
|
||||
task=task_id, **query
|
||||
)
|
||||
inst = {"$push": {"entries": {"$each": [entry.to_proper_dict()]}}}
|
||||
if new_position >= 0:
|
||||
inst["$push"]["entries"]["$position"] = new_position
|
||||
res = Queue.objects(entries__task__ne=task_id, **query).update_one(
|
||||
__raw__=inst
|
||||
)
|
||||
if not res:
|
||||
raise errors.bad_request.FailedAddingDuringReposition(
|
||||
task=task_id, **query
|
||||
)
|
||||
|
||||
return new_position
|
||||
262
apiserver/bll/queue/queue_metrics.py
Normal file
262
apiserver/bll/queue/queue_metrics.py
Normal file
@@ -0,0 +1,262 @@
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from typing import Sequence
|
||||
|
||||
import elasticsearch.helpers
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
import es_factory
|
||||
from apierrors.errors import bad_request
|
||||
from bll.query import Builder as QueryBuilder
|
||||
from config import config
|
||||
from database.errors import translate_errors_context
|
||||
from database.model.queue import Queue, Entry
|
||||
from timing_context import TimingContext
|
||||
|
||||
log = config.logger(__file__)
|
||||
|
||||
|
||||
class QueueMetrics:
|
||||
class EsKeys:
|
||||
WAITING_TIME_FIELD = "average_waiting_time"
|
||||
QUEUE_LENGTH_FIELD = "queue_length"
|
||||
TIMESTAMP_FIELD = "timestamp"
|
||||
QUEUE_FIELD = "queue"
|
||||
|
||||
def __init__(self, es: Elasticsearch):
|
||||
self.es = es
|
||||
|
||||
@staticmethod
|
||||
def _queue_metrics_prefix_for_company(company_id: str) -> str:
|
||||
"""Returns the es index prefix for the company"""
|
||||
return f"queue_metrics_{company_id}_"
|
||||
|
||||
@staticmethod
|
||||
def _get_es_index_suffix():
|
||||
"""Get the index name suffix for storing current month data"""
|
||||
return datetime.utcnow().strftime("%Y-%m")
|
||||
|
||||
@staticmethod
|
||||
def _calc_avg_waiting_time(entries: Sequence[Entry]) -> float:
|
||||
"""
|
||||
Calculate avg waiting time for the given tasks.
|
||||
Return 0 if the list is empty
|
||||
"""
|
||||
if not entries:
|
||||
return 0
|
||||
|
||||
now = datetime.utcnow()
|
||||
total_waiting_in_secs = sum((now - e.added).total_seconds() for e in entries)
|
||||
return total_waiting_in_secs / len(entries)
|
||||
|
||||
def log_queue_metrics_to_es(self, company_id: str, queues: Sequence[Queue]) -> bool:
|
||||
"""
|
||||
Calculate and write queue statistics (avg waiting time and queue length) to Elastic
|
||||
:return: True if the write to es was successful, false otherwise
|
||||
"""
|
||||
es_index = (
|
||||
self._queue_metrics_prefix_for_company(company_id)
|
||||
+ self._get_es_index_suffix()
|
||||
)
|
||||
|
||||
timestamp = es_factory.get_timestamp_millis()
|
||||
|
||||
def make_doc(queue: Queue) -> dict:
|
||||
entries = [e for e in queue.entries if e.added]
|
||||
return dict(
|
||||
_index=es_index,
|
||||
_source={
|
||||
self.EsKeys.TIMESTAMP_FIELD: timestamp,
|
||||
self.EsKeys.QUEUE_FIELD: queue.id,
|
||||
self.EsKeys.WAITING_TIME_FIELD: self._calc_avg_waiting_time(
|
||||
entries
|
||||
),
|
||||
self.EsKeys.QUEUE_LENGTH_FIELD: len(entries),
|
||||
},
|
||||
)
|
||||
|
||||
actions = list(map(make_doc, queues))
|
||||
|
||||
es_res = elasticsearch.helpers.bulk(self.es, actions)
|
||||
added, errors = es_res[:2]
|
||||
return (added == len(actions)) and not errors
|
||||
|
||||
def _log_current_metrics(self, company_id: str, queue_ids=Sequence[str]):
|
||||
query = dict(company=company_id)
|
||||
if queue_ids:
|
||||
query["id__in"] = list(queue_ids)
|
||||
queues = Queue.objects(**query)
|
||||
self.log_queue_metrics_to_es(company_id, queues=list(queues))
|
||||
|
||||
def _search_company_metrics(self, company_id: str, es_req: dict) -> dict:
|
||||
return self.es.search(
|
||||
index=f"{self._queue_metrics_prefix_for_company(company_id)}*",
|
||||
body=es_req,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_dates_agg(cls, interval) -> dict:
|
||||
"""
|
||||
Aggregation for building date histogram with internal grouping per queue.
|
||||
We are grouping by queue inside date histogram and not vice versa so that
|
||||
it will be easy to average between queue metrics inside each date bucket.
|
||||
Ignore empty buckets.
|
||||
"""
|
||||
return {
|
||||
"dates": {
|
||||
"date_histogram": {
|
||||
"field": cls.EsKeys.TIMESTAMP_FIELD,
|
||||
"fixed_interval": f"{interval}s",
|
||||
"min_doc_count": 1,
|
||||
},
|
||||
"aggs": {
|
||||
"queues": {
|
||||
"terms": {"field": cls.EsKeys.QUEUE_FIELD},
|
||||
"aggs": cls._get_top_waiting_agg(),
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def _get_top_waiting_agg(cls) -> dict:
|
||||
"""
|
||||
Aggregation for getting max waiting time and the corresponding queue length
|
||||
inside each date->queue bucket
|
||||
"""
|
||||
return {
|
||||
"top_avg_waiting": {
|
||||
"top_hits": {
|
||||
"sort": [
|
||||
{cls.EsKeys.WAITING_TIME_FIELD: {"order": "desc"}},
|
||||
{cls.EsKeys.QUEUE_LENGTH_FIELD: {"order": "desc"}},
|
||||
],
|
||||
"_source": {
|
||||
"includes": [
|
||||
cls.EsKeys.WAITING_TIME_FIELD,
|
||||
cls.EsKeys.QUEUE_LENGTH_FIELD,
|
||||
]
|
||||
},
|
||||
"size": 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def get_queue_metrics(
|
||||
self,
|
||||
company_id: str,
|
||||
from_date: float,
|
||||
to_date: float,
|
||||
interval: int,
|
||||
queue_ids: Sequence[str],
|
||||
) -> dict:
|
||||
"""
|
||||
Get the company queue metrics in the specified time range.
|
||||
Returned as date histograms of average values per queue and metric type.
|
||||
The from_date is extended by 'metrics_before_from_date' seconds from
|
||||
queues.conf due to possibly small amount of points. The default extension is 3600s
|
||||
In case no queue ids are specified the avg across all the
|
||||
company queues is calculated for each metric
|
||||
"""
|
||||
# self._log_current_metrics(company, queue_ids=queue_ids)
|
||||
|
||||
if from_date >= to_date:
|
||||
raise bad_request.FieldsValueError("from_date must be less than to_date")
|
||||
|
||||
seconds_before = config.get("services.queues.metrics_before_from_date", 3600)
|
||||
must_terms = [QueryBuilder.dates_range(from_date - seconds_before, to_date)]
|
||||
if queue_ids:
|
||||
must_terms.append(QueryBuilder.terms("queue", queue_ids))
|
||||
|
||||
es_req = {
|
||||
"size": 0,
|
||||
"query": {"bool": {"must": must_terms}},
|
||||
"aggs": self._get_dates_agg(interval),
|
||||
}
|
||||
|
||||
with translate_errors_context(), TimingContext("es", "get_queue_metrics"):
|
||||
res = self._search_company_metrics(company_id, es_req)
|
||||
|
||||
if "aggregations" not in res:
|
||||
return {}
|
||||
|
||||
date_metrics = [
|
||||
dict(
|
||||
timestamp=d["key"],
|
||||
queue_metrics=self._extract_queue_metrics(d["queues"]["buckets"]),
|
||||
)
|
||||
for d in res["aggregations"]["dates"]["buckets"]
|
||||
if d["doc_count"] > 0
|
||||
]
|
||||
if queue_ids:
|
||||
return self._datetime_histogram_per_queue(date_metrics)
|
||||
|
||||
return self._average_datetime_histogram(date_metrics)
|
||||
|
||||
@classmethod
|
||||
def _datetime_histogram_per_queue(cls, date_metrics: Sequence[dict]) -> dict:
|
||||
"""
|
||||
Build datetime histogram per queue from datetime histogram where every
|
||||
bucket contains all the queues metrics
|
||||
"""
|
||||
queues_data = defaultdict(list)
|
||||
for date_data in date_metrics:
|
||||
timestamp = date_data["timestamp"]
|
||||
for queue, metrics in date_data["queue_metrics"].items():
|
||||
queues_data[queue].append({"date": timestamp, **metrics})
|
||||
|
||||
return queues_data
|
||||
|
||||
@classmethod
|
||||
def _average_datetime_histogram(cls, date_metrics: Sequence[dict]) -> dict:
|
||||
"""
|
||||
Calculate weighted averages and total count for each bucket of date_metrics histogram.
|
||||
If for any queue the data is missing then take it from the previous bucket
|
||||
The result is returned as a dictionary with one key 'total'
|
||||
"""
|
||||
queues_total = []
|
||||
last_values = {}
|
||||
for date_data in date_metrics:
|
||||
date_metrics = date_data["queue_metrics"]
|
||||
queue_metrics = {
|
||||
**date_metrics,
|
||||
**{k: v for k, v in last_values.items() if k not in date_metrics},
|
||||
}
|
||||
|
||||
total_length = sum(m["queue_length"] for m in queue_metrics.values())
|
||||
if total_length:
|
||||
total_average = sum(
|
||||
m["avg_waiting_time"] * m["queue_length"] / total_length
|
||||
for m in queue_metrics.values()
|
||||
)
|
||||
else:
|
||||
total_average = 0
|
||||
|
||||
queues_total.append(
|
||||
dict(
|
||||
date=date_data["timestamp"],
|
||||
avg_waiting_time=total_average,
|
||||
queue_length=total_length,
|
||||
)
|
||||
)
|
||||
|
||||
for k, v in date_metrics.items():
|
||||
last_values[k] = v
|
||||
|
||||
return dict(total=queues_total)
|
||||
|
||||
@classmethod
|
||||
def _extract_queue_metrics(cls, queue_buckets: Sequence[dict]) -> dict:
|
||||
"""
|
||||
Extract ES data for single date and queue bucket
|
||||
"""
|
||||
queue_metrics = dict()
|
||||
for queue_data in queue_buckets:
|
||||
if not queue_data["doc_count"]:
|
||||
continue
|
||||
res = queue_data["top_avg_waiting"]["hits"]["hits"][0]["_source"]
|
||||
queue_metrics[queue_data["key"]] = {
|
||||
"queue_length": res[cls.EsKeys.QUEUE_LENGTH_FIELD],
|
||||
"avg_waiting_time": res[cls.EsKeys.WAITING_TIME_FIELD],
|
||||
}
|
||||
return queue_metrics
|
||||
Reference in New Issue
Block a user