mirror of
https://github.com/clearml/clearml-server
synced 2025-06-26 23:15:47 +00:00
Add support for pagination in events.debug_images
This commit is contained in:
parent
69714d5b5c
commit
6c8508eb7f
@ -89,6 +89,8 @@ _error_codes = {
|
||||
1003: ('worker_registered', 'worker is already registered'),
|
||||
1004: ('worker_not_registered', 'worker is not registered'),
|
||||
1005: ('worker_stats_not_found', 'worker stats not found'),
|
||||
|
||||
1104: ('invalid_scroll_id', 'Invalid scroll id'),
|
||||
},
|
||||
|
||||
(401, 'unauthorized'): {
|
||||
|
@ -1,9 +1,12 @@
|
||||
from typing import Sequence
|
||||
|
||||
from jsonmodels.fields import StringField
|
||||
from jsonmodels import validators
|
||||
from jsonmodels.fields import StringField, BoolField
|
||||
from jsonmodels.models import Base
|
||||
from jsonmodels.validators import Length
|
||||
|
||||
from apimodels import ListField, IntField, ActualEnumField
|
||||
from bll.event.event_metrics import EventType
|
||||
from bll.event.scalar_key import ScalarKeyEnum
|
||||
|
||||
|
||||
@ -17,4 +20,44 @@ class ScalarMetricsIterHistogramRequest(HistogramRequestBase):
|
||||
|
||||
|
||||
class MultiTaskScalarMetricsIterHistogramRequest(HistogramRequestBase):
|
||||
tasks: Sequence[str] = ListField(items_types=str, required=True)
|
||||
tasks: Sequence[str] = ListField(
|
||||
items_types=str, validators=[Length(minimum_value=1)]
|
||||
)
|
||||
|
||||
|
||||
class TaskMetric(Base):
|
||||
task: str = StringField(required=True)
|
||||
metric: str = StringField(required=True)
|
||||
|
||||
|
||||
class DebugImagesRequest(Base):
|
||||
metrics: Sequence[TaskMetric] = ListField(
|
||||
items_types=TaskMetric, validators=[Length(minimum_value=1)]
|
||||
)
|
||||
iters: int = IntField(default=1, validators=validators.Min(1))
|
||||
navigate_earlier: bool = BoolField(default=True)
|
||||
refresh: bool = BoolField(default=False)
|
||||
scroll_id: str = StringField()
|
||||
|
||||
|
||||
class IterationEvents(Base):
|
||||
iter: int = IntField()
|
||||
events: Sequence[dict] = ListField(items_types=dict)
|
||||
|
||||
|
||||
class MetricEvents(Base):
|
||||
task: str = StringField()
|
||||
metric: str = StringField()
|
||||
iterations: Sequence[IterationEvents] = ListField(items_types=IterationEvents)
|
||||
|
||||
|
||||
class DebugImageResponse(Base):
|
||||
metrics: Sequence[MetricEvents] = ListField(items_types=MetricEvents)
|
||||
scroll_id: str = StringField()
|
||||
|
||||
|
||||
class TaskMetricsRequest(Base):
|
||||
tasks: Sequence[str] = ListField(
|
||||
items_types=str, validators=[Length(minimum_value=1)]
|
||||
)
|
||||
event_type: EventType = ActualEnumField(EventType, required=True)
|
||||
|
464
server/bll/event/debug_images_iterator.py
Normal file
464
server/bll/event/debug_images_iterator.py
Normal file
@ -0,0 +1,464 @@
|
||||
from collections import defaultdict
|
||||
from concurrent.futures.thread import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from operator import attrgetter, itemgetter
|
||||
|
||||
import attr
|
||||
import dpath
|
||||
from boltons.iterutils import bucketize
|
||||
from elasticsearch import Elasticsearch
|
||||
from redis import StrictRedis
|
||||
from typing import Sequence, Tuple, Optional, Mapping
|
||||
|
||||
import database
|
||||
from apierrors import errors
|
||||
from bll.redis_cache_manager import RedisCacheManager
|
||||
from bll.event.event_metrics import EventMetrics
|
||||
from config import config
|
||||
from database.errors import translate_errors_context
|
||||
from jsonmodels.models import Base
|
||||
from jsonmodels.fields import StringField, ListField, IntField
|
||||
|
||||
from database.model.task.metrics import MetricEventStats
|
||||
from database.model.task.task import Task
|
||||
from timing_context import TimingContext
|
||||
from utilities.json import loads, dumps
|
||||
|
||||
|
||||
class VariantScrollState(Base):
|
||||
name: str = StringField(required=True)
|
||||
recycle_url_marker: str = StringField()
|
||||
last_invalid_iteration: int = IntField()
|
||||
|
||||
|
||||
class MetricScrollState(Base):
|
||||
task: str = StringField(required=True)
|
||||
name: str = StringField(required=True)
|
||||
last_min_iter: Optional[int] = IntField()
|
||||
last_max_iter: Optional[int] = IntField()
|
||||
timestamp: int = IntField(default=0)
|
||||
variants: Sequence[VariantScrollState] = ListField([VariantScrollState])
|
||||
|
||||
def reset(self):
|
||||
"""Reset the scrolling state for the metric"""
|
||||
self.last_min_iter = self.last_max_iter = None
|
||||
|
||||
|
||||
class DebugImageEventsScrollState(Base):
|
||||
id: str = StringField(required=True)
|
||||
metrics: Sequence[MetricScrollState] = ListField([MetricScrollState])
|
||||
|
||||
def to_json(self):
|
||||
return dumps(self.to_struct())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, s):
|
||||
return cls(**loads(s))
|
||||
|
||||
|
||||
@attr.s(auto_attribs=True)
|
||||
class DebugImagesResult(object):
|
||||
metric_events: Sequence[tuple] = []
|
||||
next_scroll_id: str = None
|
||||
|
||||
|
||||
class DebugImagesIterator:
|
||||
EVENT_TYPE = "training_debug_image"
|
||||
STATE_EXPIRATION_SECONDS = 3600
|
||||
|
||||
@property
|
||||
def _max_workers(self):
|
||||
return config.get("services.events.max_metrics_concurrency", 4)
|
||||
|
||||
def __init__(self, redis: StrictRedis, es: Elasticsearch):
|
||||
self.es = es
|
||||
self.cache_manager = RedisCacheManager(
|
||||
state_class=DebugImageEventsScrollState,
|
||||
redis=redis,
|
||||
expiration_interval=self.STATE_EXPIRATION_SECONDS,
|
||||
)
|
||||
|
||||
def get_task_events(
|
||||
self,
|
||||
company_id: str,
|
||||
metrics: Sequence[Tuple[str, str]],
|
||||
iter_count: int,
|
||||
navigate_earlier: bool = True,
|
||||
refresh: bool = False,
|
||||
state_id: str = None,
|
||||
) -> DebugImagesResult:
|
||||
es_index = EventMetrics.get_index_name(company_id, self.EVENT_TYPE)
|
||||
if not self.es.indices.exists(es_index):
|
||||
return DebugImagesResult()
|
||||
|
||||
unique_metrics = set(metrics)
|
||||
state = self.cache_manager.get_state(state_id) if state_id else None
|
||||
if not state:
|
||||
state = DebugImageEventsScrollState(
|
||||
id=database.utils.id(),
|
||||
metrics=self._init_metric_states(es_index, list(unique_metrics)),
|
||||
)
|
||||
else:
|
||||
state_metrics = set((m.task, m.name) for m in state.metrics)
|
||||
if state_metrics != unique_metrics:
|
||||
raise errors.bad_request.InvalidScrollId(
|
||||
"while getting debug images events", scroll_id=state_id
|
||||
)
|
||||
|
||||
if refresh:
|
||||
self._reinit_outdated_metric_states(company_id, es_index, state)
|
||||
for metric_state in state.metrics:
|
||||
metric_state.reset()
|
||||
|
||||
res = DebugImagesResult(next_scroll_id=state.id)
|
||||
try:
|
||||
with ThreadPoolExecutor(self._max_workers) as pool:
|
||||
res.metric_events = list(
|
||||
pool.map(
|
||||
partial(
|
||||
self._get_task_metric_events,
|
||||
es_index=es_index,
|
||||
iter_count=iter_count,
|
||||
navigate_earlier=navigate_earlier,
|
||||
),
|
||||
state.metrics,
|
||||
)
|
||||
)
|
||||
finally:
|
||||
self.cache_manager.set_state(state)
|
||||
|
||||
return res
|
||||
|
||||
def _reinit_outdated_metric_states(
|
||||
self, company_id, es_index, state: DebugImageEventsScrollState
|
||||
):
|
||||
"""
|
||||
Determines the metrics for which new debug image events were added
|
||||
since their states were initialized and reinits these states
|
||||
"""
|
||||
task_ids = set(metric.task for metric in state.metrics)
|
||||
tasks = Task.objects(id__in=list(task_ids), company=company_id).only(
|
||||
"id", "metric_stats"
|
||||
)
|
||||
|
||||
def get_last_update_times_for_task_metrics(task: Task) -> Sequence[Tuple]:
|
||||
"""For metrics that reported debug image events get tuples of task_id/metric_name and last update times"""
|
||||
metric_stats: Mapping[str, MetricEventStats] = task.metric_stats
|
||||
if not metric_stats:
|
||||
return []
|
||||
|
||||
return [
|
||||
(
|
||||
(task.id, stats.metric),
|
||||
stats.event_stats_by_type[self.EVENT_TYPE].last_update,
|
||||
)
|
||||
for stats in metric_stats.values()
|
||||
if self.EVENT_TYPE in stats.event_stats_by_type
|
||||
]
|
||||
|
||||
update_times = dict(
|
||||
chain.from_iterable(
|
||||
get_last_update_times_for_task_metrics(task) for task in tasks
|
||||
)
|
||||
)
|
||||
outdated_metrics = [
|
||||
metric
|
||||
for metric in state.metrics
|
||||
if (metric.task, metric.name) in update_times
|
||||
and update_times[metric.task, metric.name] > metric.timestamp
|
||||
]
|
||||
state.metrics = [
|
||||
*(metric for metric in state.metrics if metric not in outdated_metrics),
|
||||
*(
|
||||
self._init_metric_states(
|
||||
es_index,
|
||||
[(metric.task, metric.name) for metric in outdated_metrics],
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
def _init_metric_states(
|
||||
self, es_index, metrics: Sequence[Tuple[str, str]]
|
||||
) -> Sequence[MetricScrollState]:
|
||||
"""
|
||||
Returned initialized metric scroll stated for the requested task metrics
|
||||
"""
|
||||
tasks = defaultdict(list)
|
||||
for (task, metric) in metrics:
|
||||
tasks[task].append(metric)
|
||||
|
||||
with ThreadPoolExecutor(self._max_workers) as pool:
|
||||
return list(
|
||||
chain.from_iterable(
|
||||
pool.map(
|
||||
partial(self._init_metric_states_for_task, es_index=es_index),
|
||||
tasks.items(),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
def _init_metric_states_for_task(
|
||||
self, task_metrics: Tuple[str, Sequence[str]], es_index
|
||||
) -> Sequence[MetricScrollState]:
|
||||
"""
|
||||
Return metric scroll states for the task filled with the variant states
|
||||
for the variants that reported any debug images
|
||||
"""
|
||||
task, metrics = task_metrics
|
||||
es_req: dict = {
|
||||
"size": 0,
|
||||
"query": {
|
||||
"bool": {
|
||||
"must": [{"term": {"task": task}}, {"terms": {"metric": metrics}}]
|
||||
}
|
||||
},
|
||||
"aggs": {
|
||||
"metrics": {
|
||||
"terms": {
|
||||
"field": "metric",
|
||||
"size": EventMetrics.MAX_METRICS_COUNT,
|
||||
},
|
||||
"aggs": {
|
||||
"last_event_timestamp": {"max": {"field": "timestamp"}},
|
||||
"variants": {
|
||||
"terms": {
|
||||
"field": "variant",
|
||||
"size": EventMetrics.MAX_VARIANTS_COUNT,
|
||||
},
|
||||
"aggs": {
|
||||
"urls": {
|
||||
"terms": {
|
||||
"field": "url",
|
||||
"order": {"max_iter": "desc"},
|
||||
"size": 1, # we need only one url from the most recent iteration
|
||||
},
|
||||
"aggs": {
|
||||
"max_iter": {"max": {"field": "iter"}},
|
||||
"iters": {
|
||||
"top_hits": {
|
||||
"sort": {"iter": {"order": "desc"}},
|
||||
"size": 2, # need two last iterations so that we can take
|
||||
# the second one as invalid
|
||||
"_source": "iter",
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
with translate_errors_context(), TimingContext("es", "_init_metric_states"):
|
||||
es_res = self.es.search(index=es_index, body=es_req, routing=task)
|
||||
if "aggregations" not in es_res:
|
||||
return []
|
||||
|
||||
def init_variant_scroll_state(variant: dict):
|
||||
"""
|
||||
Return new variant scroll state for the passed variant bucket
|
||||
If the image urls get recycled then fill the last_invalid_iteration field
|
||||
"""
|
||||
state = VariantScrollState(name=variant["key"])
|
||||
top_iter_url = dpath.get(variant, "urls/buckets")[0]
|
||||
iters = dpath.get(top_iter_url, "iters/hits/hits")
|
||||
if len(iters) > 1:
|
||||
state.last_invalid_iteration = dpath.get(iters[1], "_source/iter")
|
||||
return state
|
||||
|
||||
return [
|
||||
MetricScrollState(
|
||||
task=task,
|
||||
name=metric["key"],
|
||||
variants=[
|
||||
init_variant_scroll_state(variant)
|
||||
for variant in dpath.get(metric, "variants/buckets")
|
||||
],
|
||||
timestamp=dpath.get(metric, "last_event_timestamp/value"),
|
||||
)
|
||||
for metric in dpath.get(es_res, "aggregations/metrics/buckets")
|
||||
]
|
||||
|
||||
def _get_task_metric_events(
|
||||
self,
|
||||
metric: MetricScrollState,
|
||||
es_index: str,
|
||||
iter_count: int,
|
||||
navigate_earlier: bool,
|
||||
) -> Tuple:
|
||||
"""
|
||||
Return task metric events grouped by iterations
|
||||
Update metric scroll state
|
||||
"""
|
||||
if metric.last_max_iter is None:
|
||||
# the first fetch is always from the latest iteration to the earlier ones
|
||||
navigate_earlier = True
|
||||
|
||||
must_conditions = [
|
||||
{"term": {"task": metric.task}},
|
||||
{"term": {"metric": metric.name}},
|
||||
]
|
||||
must_not_conditions = []
|
||||
|
||||
range_condition = None
|
||||
if navigate_earlier and metric.last_min_iter is not None:
|
||||
range_condition = {"lt": metric.last_min_iter}
|
||||
elif not navigate_earlier and metric.last_max_iter is not None:
|
||||
range_condition = {"gt": metric.last_max_iter}
|
||||
if range_condition:
|
||||
must_conditions.append({"range": {"iter": range_condition}})
|
||||
|
||||
if navigate_earlier:
|
||||
"""
|
||||
When navigating to earlier iterations consider only
|
||||
variants whose invalid iterations border is lower than
|
||||
our starting iteration. For these variants make sure
|
||||
that only events from the valid iterations are returned
|
||||
"""
|
||||
if not metric.last_min_iter:
|
||||
variants = metric.variants
|
||||
else:
|
||||
variants = list(
|
||||
v
|
||||
for v in metric.variants
|
||||
if v.last_invalid_iteration is None
|
||||
or v.last_invalid_iteration < metric.last_min_iter
|
||||
)
|
||||
if not variants:
|
||||
return metric.task, metric.name, []
|
||||
must_conditions.append(
|
||||
{"terms": {"variant": list(v.name for v in variants)}}
|
||||
)
|
||||
else:
|
||||
"""
|
||||
When navigating to later iterations all variants may be relevant.
|
||||
For the variants whose invalid border is higher than our starting
|
||||
iteration make sure that only events from valid iterations are returned
|
||||
"""
|
||||
variants = list(
|
||||
v
|
||||
for v in metric.variants
|
||||
if v.last_invalid_iteration is not None
|
||||
and v.last_invalid_iteration > metric.last_max_iter
|
||||
)
|
||||
|
||||
variants_conditions = [
|
||||
{
|
||||
"bool": {
|
||||
"must": [
|
||||
{"term": {"variant": v.name}},
|
||||
{"range": {"iter": {"lte": v.last_invalid_iteration}}},
|
||||
]
|
||||
}
|
||||
}
|
||||
for v in variants
|
||||
if v.last_invalid_iteration is not None
|
||||
]
|
||||
if variants_conditions:
|
||||
must_not_conditions.append({"bool": {"should": variants_conditions}})
|
||||
|
||||
es_req = {
|
||||
"size": 0,
|
||||
"query": {
|
||||
"bool": {"must": must_conditions, "must_not": must_not_conditions}
|
||||
},
|
||||
"aggs": {
|
||||
"iters": {
|
||||
"terms": {
|
||||
"field": "iter",
|
||||
"size": iter_count,
|
||||
"order": {"_term": "desc" if navigate_earlier else "asc"},
|
||||
},
|
||||
"aggs": {
|
||||
"variants": {
|
||||
"terms": {
|
||||
"field": "variant",
|
||||
"size": EventMetrics.MAX_VARIANTS_COUNT,
|
||||
},
|
||||
"aggs": {
|
||||
"events": {
|
||||
"top_hits": {"sort": {"url": {"order": "desc"}}}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
with translate_errors_context(), TimingContext("es", "get_debug_image_events"):
|
||||
es_res = self.es.search(index=es_index, body=es_req, routing=metric.task)
|
||||
if "aggregations" not in es_res:
|
||||
return metric.task, metric.name, []
|
||||
|
||||
def get_iteration_events(variant_buckets: Sequence[dict]) -> Sequence:
|
||||
return [
|
||||
ev["_source"]
|
||||
for v in variant_buckets
|
||||
for ev in dpath.get(v, "events/hits/hits")
|
||||
]
|
||||
|
||||
iterations = [
|
||||
{
|
||||
"iter": it["key"],
|
||||
"events": get_iteration_events(dpath.get(it, "variants/buckets")),
|
||||
}
|
||||
for it in dpath.get(es_res, "aggregations/iters/buckets")
|
||||
]
|
||||
if not navigate_earlier:
|
||||
iterations.sort(key=itemgetter("iter"), reverse=True)
|
||||
if iterations:
|
||||
metric.last_max_iter = iterations[0]["iter"]
|
||||
metric.last_min_iter = iterations[-1]["iter"]
|
||||
|
||||
# Commented for now since the last invalid iteration is calculated in the beginning
|
||||
# if navigate_earlier and any(
|
||||
# variant.last_invalid_iteration is None for variant in variants
|
||||
# ):
|
||||
# """
|
||||
# Variants validation flags due to recycling can
|
||||
# be set only on navigation to earlier frames
|
||||
# """
|
||||
# iterations = self._update_variants_invalid_iterations(variants, iterations)
|
||||
|
||||
return metric.task, metric.name, iterations
|
||||
|
||||
@staticmethod
|
||||
def _update_variants_invalid_iterations(
|
||||
variants: Sequence[VariantScrollState], iterations: Sequence[dict]
|
||||
) -> Sequence[dict]:
|
||||
"""
|
||||
This code is currently not in used since the invalid iterations
|
||||
are calculated during MetricState initialization
|
||||
For variants that do not have recycle url marker set it from the
|
||||
first event
|
||||
For variants that do not have last_invalid_iteration set check if the
|
||||
recycle marker was reached on a certain iteration and set it to the
|
||||
corresponding iteration
|
||||
For variants that have a newly set last_invalid_iteration remove
|
||||
events from the invalid iterations
|
||||
Return the updated iterations list
|
||||
"""
|
||||
variants_lookup = bucketize(variants, attrgetter("name"))
|
||||
for it in iterations:
|
||||
iteration = it["iter"]
|
||||
events_to_remove = []
|
||||
for event in it["events"]:
|
||||
variant = variants_lookup[event["variant"]][0]
|
||||
if (
|
||||
variant.last_invalid_iteration
|
||||
and variant.last_invalid_iteration >= iteration
|
||||
):
|
||||
events_to_remove.append(event)
|
||||
continue
|
||||
event_url = event.get("url")
|
||||
if not variant.recycle_url_marker:
|
||||
variant.recycle_url_marker = event_url
|
||||
elif variant.recycle_url_marker == event_url:
|
||||
variant.last_invalid_iteration = iteration
|
||||
events_to_remove.append(event)
|
||||
if events_to_remove:
|
||||
it["events"] = [ev for ev in it["events"] if ev not in events_to_remove]
|
||||
return [it for it in iterations if it["events"]]
|
@ -2,7 +2,6 @@ import hashlib
|
||||
from collections import defaultdict
|
||||
from contextlib import closing
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from operator import attrgetter
|
||||
from typing import Sequence
|
||||
|
||||
@ -15,46 +14,39 @@ from nested_dict import nested_dict
|
||||
import database.utils as dbutils
|
||||
import es_factory
|
||||
from apierrors import errors
|
||||
from bll.event.event_metrics import EventMetrics
|
||||
from bll.event.debug_images_iterator import DebugImagesIterator
|
||||
from bll.event.event_metrics import EventMetrics, EventType
|
||||
from bll.task import TaskBLL
|
||||
from config import config
|
||||
from database.errors import translate_errors_context
|
||||
from database.model.task.task import Task, TaskStatus
|
||||
from redis_manager import redman
|
||||
from timing_context import TimingContext
|
||||
from utilities.dicts import flatten_nested_items
|
||||
|
||||
|
||||
class EventType(Enum):
|
||||
metrics_scalar = "training_stats_scalar"
|
||||
metrics_vector = "training_stats_vector"
|
||||
metrics_image = "training_debug_image"
|
||||
metrics_plot = "plot"
|
||||
task_log = "log"
|
||||
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
EVENT_TYPES = set(map(attrgetter("value"), EventType))
|
||||
|
||||
|
||||
LOCKED_TASK_STATUSES = (TaskStatus.publishing, TaskStatus.published)
|
||||
|
||||
|
||||
@attr.s
|
||||
@attr.s(auto_attribs=True)
|
||||
class TaskEventsResult(object):
|
||||
events = attr.ib(type=list, default=attr.Factory(list))
|
||||
total_events = attr.ib(type=int, default=0)
|
||||
next_scroll_id = attr.ib(type=str, default=None)
|
||||
total_events: int = 0
|
||||
next_scroll_id: str = None
|
||||
events: list = attr.ib(factory=list)
|
||||
|
||||
|
||||
class EventBLL(object):
|
||||
id_fields = ("task", "iter", "metric", "variant", "key")
|
||||
|
||||
def __init__(self, events_es=None):
|
||||
def __init__(self, events_es=None, redis=None):
|
||||
self.es = events_es or es_factory.connect("events")
|
||||
self._metrics = EventMetrics(self.es)
|
||||
self._skip_iteration_for_metric = set(
|
||||
config.get("services.events.ignore_iteration.metrics", [])
|
||||
)
|
||||
self.redis = redis or redman.connection("apiserver")
|
||||
self.debug_images_iterator = DebugImagesIterator(es=self.es, redis=self.redis)
|
||||
|
||||
@property
|
||||
def metrics(self) -> EventMetrics:
|
||||
@ -64,9 +56,12 @@ class EventBLL(object):
|
||||
actions = []
|
||||
task_ids = set()
|
||||
task_iteration = defaultdict(lambda: 0)
|
||||
task_last_events = nested_dict(
|
||||
task_last_scalar_events = nested_dict(
|
||||
3, dict
|
||||
) # task_id -> metric_hash -> variant_hash -> MetricEvent
|
||||
task_last_events = nested_dict(
|
||||
3, dict
|
||||
) # task_id -> metric_hash -> event_type -> MetricEvent
|
||||
|
||||
for event in events:
|
||||
# remove spaces from event type
|
||||
@ -108,6 +103,9 @@ class EventBLL(object):
|
||||
event["value"] = event["values"]
|
||||
del event["values"]
|
||||
|
||||
event["metric"] = event.get("metric") or ""
|
||||
event["variant"] = event.get("variant") or ""
|
||||
|
||||
index_name = EventMetrics.get_index_name(company_id, event_type)
|
||||
es_action = {
|
||||
"_op_type": "index", # overwrite if exists with same ID
|
||||
@ -132,9 +130,12 @@ class EventBLL(object):
|
||||
):
|
||||
task_iteration[task_id] = max(iter, task_iteration[task_id])
|
||||
|
||||
self._update_last_metric_events_for_task(
|
||||
last_events=task_last_events[task_id], event=event,
|
||||
)
|
||||
if event_type == EventType.metrics_scalar.value:
|
||||
self._update_last_metric_event_for_task(
|
||||
task_last_events=task_last_events, task_id=task_id, event=event
|
||||
self._update_last_scalar_events_for_task(
|
||||
last_events=task_last_scalar_events[task_id], event=event
|
||||
)
|
||||
else:
|
||||
es_action["_routing"] = task_id
|
||||
@ -187,6 +188,7 @@ class EventBLL(object):
|
||||
task_id=task_id,
|
||||
now=now,
|
||||
iter_max=task_iteration.get(task_id),
|
||||
last_scalar_events=task_last_scalar_events.get(task_id),
|
||||
last_events=task_last_events.get(task_id),
|
||||
)
|
||||
|
||||
@ -202,12 +204,12 @@ class EventBLL(object):
|
||||
|
||||
return added, errors_in_bulk
|
||||
|
||||
def _update_last_metric_event_for_task(self, task_last_events, task_id, event):
|
||||
def _update_last_scalar_events_for_task(self, last_events, event):
|
||||
"""
|
||||
Update task_last_events structure for the provided task_id with the provided event details if this event is more
|
||||
Update last_events structure with the provided event details if this event is more
|
||||
recent than the currently stored event for its metric/variant combination.
|
||||
|
||||
task_last_events contains [hashed_metric_name -> hashed_variant_name -> event]. Keys are hashed to avoid mongodb
|
||||
last_events contains [hashed_metric_name -> hashed_variant_name -> event]. Keys are hashed to avoid mongodb
|
||||
key conflicts due to invalid characters and/or long field names.
|
||||
"""
|
||||
metric = event.get("metric")
|
||||
@ -218,13 +220,34 @@ class EventBLL(object):
|
||||
metric_hash = dbutils.hash_field_name(metric)
|
||||
variant_hash = dbutils.hash_field_name(variant)
|
||||
|
||||
last_events = task_last_events[task_id]
|
||||
|
||||
timestamp = last_events[metric_hash][variant_hash].get("timestamp", None)
|
||||
if timestamp is None or timestamp < event["timestamp"]:
|
||||
last_events[metric_hash][variant_hash] = event
|
||||
|
||||
def _update_task(self, company_id, task_id, now, iter_max=None, last_events=None):
|
||||
def _update_last_metric_events_for_task(self, last_events, event):
|
||||
"""
|
||||
Update last_events structure with the provided event details if this event is more
|
||||
recent than the currently stored event for its metric/event_type combination.
|
||||
last_events contains [metric_name -> event_type -> event]
|
||||
"""
|
||||
metric = event.get("metric")
|
||||
event_type = event.get("type")
|
||||
if not (metric and event_type):
|
||||
return
|
||||
|
||||
timestamp = last_events[metric][event_type].get("timestamp", None)
|
||||
if timestamp is None or timestamp < event["timestamp"]:
|
||||
last_events[metric][event_type] = event
|
||||
|
||||
def _update_task(
|
||||
self,
|
||||
company_id,
|
||||
task_id,
|
||||
now,
|
||||
iter_max=None,
|
||||
last_scalar_events=None,
|
||||
last_events=None,
|
||||
):
|
||||
"""
|
||||
Update task information in DB with aggregated results after handling event(s) related to this task.
|
||||
|
||||
@ -237,15 +260,18 @@ class EventBLL(object):
|
||||
if iter_max is not None:
|
||||
fields["last_iteration_max"] = iter_max
|
||||
|
||||
if last_events:
|
||||
fields["last_values"] = list(
|
||||
if last_scalar_events:
|
||||
fields["last_scalar_values"] = list(
|
||||
flatten_nested_items(
|
||||
last_events,
|
||||
last_scalar_events,
|
||||
nesting=2,
|
||||
include_leaves=["value", "metric", "variant"],
|
||||
)
|
||||
)
|
||||
|
||||
if last_events:
|
||||
fields["last_events"] = last_events
|
||||
|
||||
if not fields:
|
||||
return False
|
||||
|
||||
|
@ -1,13 +1,13 @@
|
||||
import itertools
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
from operator import itemgetter
|
||||
from typing import Sequence, Tuple, Callable, Iterable
|
||||
|
||||
from boltons.iterutils import bucketize
|
||||
from elasticsearch import Elasticsearch
|
||||
from typing import Sequence, Tuple, Callable, Iterable
|
||||
|
||||
from mongoengine import Q
|
||||
|
||||
from apierrors import errors
|
||||
@ -21,6 +21,14 @@ from utilities import safe_get
|
||||
log = config.logger(__file__)
|
||||
|
||||
|
||||
class EventType(Enum):
|
||||
metrics_scalar = "training_stats_scalar"
|
||||
metrics_vector = "training_stats_vector"
|
||||
metrics_image = "training_debug_image"
|
||||
metrics_plot = "plot"
|
||||
task_log = "log"
|
||||
|
||||
|
||||
class EventMetrics:
|
||||
MAX_TASKS_COUNT = 50
|
||||
MAX_METRICS_COUNT = 200
|
||||
@ -66,7 +74,8 @@ class EventMetrics:
|
||||
"""
|
||||
if len(task_ids) > self.MAX_TASKS_COUNT:
|
||||
raise errors.BadRequest(
|
||||
f"Up to {self.MAX_TASKS_COUNT} tasks supported for comparison", len(task_ids)
|
||||
f"Up to {self.MAX_TASKS_COUNT} tasks supported for comparison",
|
||||
len(task_ids),
|
||||
)
|
||||
|
||||
task_name_by_id = {}
|
||||
@ -168,9 +177,7 @@ class EventMetrics:
|
||||
with ThreadPoolExecutor(max_workers=max_concurrency) as pool:
|
||||
metrics = itertools.chain.from_iterable(
|
||||
pool.map(
|
||||
partial(
|
||||
get_func, task_ids=task_ids, es_index=es_index, key=key
|
||||
),
|
||||
partial(get_func, task_ids=task_ids, es_index=es_index, key=key),
|
||||
intervals,
|
||||
)
|
||||
)
|
||||
@ -440,3 +447,50 @@ class EventMetrics:
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
def get_tasks_metrics(
|
||||
self, company_id, task_ids: Sequence, event_type: EventType
|
||||
) -> Sequence:
|
||||
"""
|
||||
For the requested tasks return all the metrics that
|
||||
reported events of the requested types
|
||||
"""
|
||||
es_index = EventMetrics.get_index_name(company_id, event_type.value)
|
||||
if not self.es.indices.exists(es_index):
|
||||
return {}
|
||||
|
||||
max_concurrency = config.get("services.events.max_metrics_concurrency", 4)
|
||||
with ThreadPoolExecutor(max_concurrency) as pool:
|
||||
res = pool.map(
|
||||
partial(
|
||||
self._get_task_metrics, es_index=es_index, event_type=event_type,
|
||||
),
|
||||
task_ids,
|
||||
)
|
||||
return list(zip(task_ids, res))
|
||||
|
||||
def _get_task_metrics(self, task_id, es_index, event_type: EventType) -> Sequence:
|
||||
es_req = {
|
||||
"size": 0,
|
||||
"query": {
|
||||
"bool": {
|
||||
"must": [
|
||||
{"term": {"task": task_id}},
|
||||
{"term": {"type": event_type.value}},
|
||||
]
|
||||
}
|
||||
},
|
||||
"aggs": {
|
||||
"metrics": {
|
||||
"terms": {"field": "metric", "size": self.MAX_METRICS_COUNT}
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
with translate_errors_context(), TimingContext("es", "_get_task_metrics"):
|
||||
es_res = self.es.search(index=es_index, body=es_req, routing=task_id)
|
||||
|
||||
return [
|
||||
metric["key"]
|
||||
for metric in safe_get(es_res, "aggregations/metrics/buckets", default=[])
|
||||
]
|
||||
|
44
server/bll/redis_cache_manager.py
Normal file
44
server/bll/redis_cache_manager.py
Normal file
@ -0,0 +1,44 @@
|
||||
from typing import Optional, TypeVar, Generic, Type
|
||||
|
||||
from redis import StrictRedis
|
||||
|
||||
from timing_context import TimingContext
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class RedisCacheManager(Generic[T]):
|
||||
"""
|
||||
Class for store/retreive of state objects from redis
|
||||
|
||||
self.state_class - class of the state
|
||||
self.redis - instance of redis
|
||||
self.expiration_interval - expiration interval in seconds
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, state_class: Type[T], redis: StrictRedis, expiration_interval: int
|
||||
):
|
||||
self.state_class = state_class
|
||||
self.redis = redis
|
||||
self.expiration_interval = expiration_interval
|
||||
|
||||
def set_state(self, state: T) -> None:
|
||||
redis_key = self._get_redis_key(state.id)
|
||||
with TimingContext("redis", "cache_set_state"):
|
||||
self.redis.set(redis_key, state.to_json())
|
||||
self.redis.expire(redis_key, self.expiration_interval)
|
||||
|
||||
def get_state(self, state_id) -> Optional[T]:
|
||||
redis_key = self._get_redis_key(state_id)
|
||||
with TimingContext("redis", "cache_get_state"):
|
||||
response = self.redis.get(redis_key)
|
||||
if response:
|
||||
return self.state_class.from_json(response)
|
||||
|
||||
def delete_state(self, state_id) -> None:
|
||||
with TimingContext("redis", "cache_delete_state"):
|
||||
self.redis.delete(self._get_redis_key(state_id))
|
||||
|
||||
def _get_redis_key(self, state_id):
|
||||
return f"{self.state_class}/{state_id}"
|
@ -3,13 +3,14 @@ from datetime import datetime, timedelta
|
||||
from operator import attrgetter
|
||||
from random import random
|
||||
from time import sleep
|
||||
from typing import Collection, Sequence, Tuple, Any, Optional, List
|
||||
from typing import Collection, Sequence, Tuple, Any, Optional, List, Dict
|
||||
|
||||
import pymongo.results
|
||||
import six
|
||||
from mongoengine import Q
|
||||
from six import string_types
|
||||
|
||||
import database.utils as dbutils
|
||||
import es_factory
|
||||
from apierrors import errors
|
||||
from apimodels.tasks import Artifact as ApiArtifact
|
||||
@ -17,6 +18,7 @@ from config import config
|
||||
from database.errors import translate_errors_context
|
||||
from database.model.model import Model
|
||||
from database.model.project import Project
|
||||
from database.model.task.metrics import EventStats, MetricEventStats
|
||||
from database.model.task.output import Output
|
||||
from database.model.task.task import (
|
||||
Task,
|
||||
@ -197,7 +199,9 @@ class TaskBLL(object):
|
||||
system_tags=system_tags or [],
|
||||
type=task.type,
|
||||
script=task.script,
|
||||
output=Output(destination=task.output.destination) if task.output else None,
|
||||
output=Output(destination=task.output.destination)
|
||||
if task.output
|
||||
else None,
|
||||
execution=execution_dict,
|
||||
)
|
||||
cls.validate(new_task)
|
||||
@ -277,7 +281,8 @@ class TaskBLL(object):
|
||||
last_update: datetime = None,
|
||||
last_iteration: int = None,
|
||||
last_iteration_max: int = None,
|
||||
last_values: Sequence[Tuple[Tuple[str, ...], Any]] = None,
|
||||
last_scalar_values: Sequence[Tuple[Tuple[str, ...], Any]] = None,
|
||||
last_events: Dict[str, Dict[str, dict]] = None,
|
||||
**extra_updates,
|
||||
):
|
||||
"""
|
||||
@ -289,7 +294,8 @@ class TaskBLL(object):
|
||||
task's last iteration value.
|
||||
:param last_iteration_max: Last reported iteration. Use this to conditionally set a value only
|
||||
if the current task's last iteration value is smaller than the provided value.
|
||||
:param last_values: Last reported metrics summary (value, metric, variant).
|
||||
:param last_scalar_values: Last reported metrics summary for scalar events (value, metric, variant).
|
||||
:param last_events: Last reported metrics summary (value, metric, event type).
|
||||
:param extra_updates: Extra task updates to include in this update call.
|
||||
:return:
|
||||
"""
|
||||
@ -300,17 +306,33 @@ class TaskBLL(object):
|
||||
elif last_iteration_max is not None:
|
||||
extra_updates.update(max__last_iteration=last_iteration_max)
|
||||
|
||||
if last_values is not None:
|
||||
if last_scalar_values is not None:
|
||||
|
||||
def op_path(op, *path):
|
||||
return "__".join((op, "last_metrics") + path)
|
||||
|
||||
for path, value in last_values:
|
||||
for path, value in last_scalar_values:
|
||||
extra_updates[op_path("set", *path)] = value
|
||||
if path[-1] == "value":
|
||||
extra_updates[op_path("min", *path[:-1], "min_value")] = value
|
||||
extra_updates[op_path("max", *path[:-1], "max_value")] = value
|
||||
|
||||
if last_events is not None:
|
||||
|
||||
def events_per_type(metric_data: Dict[str, dict]) -> Dict[str, EventStats]:
|
||||
return {
|
||||
event_type: EventStats(last_update=event["timestamp"])
|
||||
for event_type, event in metric_data.items()
|
||||
}
|
||||
|
||||
metric_stats = {
|
||||
dbutils.hash_field_name(metric_key): MetricEventStats(
|
||||
metric=metric_key, event_stats_by_type=events_per_type(metric_data),
|
||||
)
|
||||
for metric_key, metric_data in last_events.items()
|
||||
}
|
||||
extra_updates["metric_stats"] = metric_stats
|
||||
|
||||
Task.objects(id=task_id, company=company_id).update(
|
||||
upsert=False, last_update=last_update, **extra_updates
|
||||
)
|
||||
|
@ -32,6 +32,11 @@ mongo {
|
||||
}
|
||||
|
||||
redis {
|
||||
apiserver {
|
||||
host: "127.0.0.1"
|
||||
port: 6379
|
||||
db: 0
|
||||
}
|
||||
workers {
|
||||
host: "127.0.0.1"
|
||||
port: 6379
|
||||
|
@ -1,10 +1,18 @@
|
||||
from mongoengine import EmbeddedDocument, StringField, DynamicField
|
||||
from mongoengine import (
|
||||
EmbeddedDocument,
|
||||
StringField,
|
||||
DynamicField,
|
||||
LongField,
|
||||
EmbeddedDocumentField,
|
||||
)
|
||||
|
||||
from database.fields import SafeMapField
|
||||
|
||||
|
||||
class MetricEvent(EmbeddedDocument):
|
||||
meta = {
|
||||
# For backwards compatibility reasons
|
||||
'strict': False,
|
||||
"strict": False,
|
||||
}
|
||||
|
||||
metric = StringField(required=True)
|
||||
@ -12,3 +20,20 @@ class MetricEvent(EmbeddedDocument):
|
||||
value = DynamicField(required=True)
|
||||
min_value = DynamicField() # for backwards compatibility reasons
|
||||
max_value = DynamicField() # for backwards compatibility reasons
|
||||
|
||||
|
||||
class EventStats(EmbeddedDocument):
|
||||
meta = {
|
||||
# For backwards compatibility reasons
|
||||
"strict": False,
|
||||
}
|
||||
last_update = LongField()
|
||||
|
||||
|
||||
class MetricEventStats(EmbeddedDocument):
|
||||
meta = {
|
||||
# For backwards compatibility reasons
|
||||
"strict": False,
|
||||
}
|
||||
metric = StringField(required=True)
|
||||
event_stats_by_type = SafeMapField(field=EmbeddedDocumentField(EventStats))
|
||||
|
@ -22,7 +22,7 @@ from database.model.base import ProperDictMixin
|
||||
from database.model.model_labels import ModelLabels
|
||||
from database.model.project import Project
|
||||
from database.utils import get_options
|
||||
from .metrics import MetricEvent
|
||||
from .metrics import MetricEvent, MetricEventStats
|
||||
from .output import Output
|
||||
|
||||
DEFAULT_LAST_ITERATION = 0
|
||||
@ -162,3 +162,4 @@ class Task(AttributedDocument):
|
||||
last_update = DateTimeField()
|
||||
last_iteration = IntField(default=DEFAULT_LAST_ITERATION)
|
||||
last_metrics = SafeMapField(field=SafeMapField(EmbeddedDocumentField(MetricEvent)))
|
||||
metric_stats = SafeMapField(field=EmbeddedDocumentField(MetricEventStats))
|
||||
|
@ -171,6 +171,30 @@
|
||||
critical
|
||||
]
|
||||
}
|
||||
event_type_enum {
|
||||
type: string
|
||||
enum: [
|
||||
training_stats_scalar
|
||||
training_stats_vector
|
||||
training_debug_image
|
||||
plot
|
||||
log
|
||||
]
|
||||
}
|
||||
task_metric {
|
||||
type: object
|
||||
required: [task, metric]
|
||||
properties {
|
||||
task {
|
||||
description: "Task ID"
|
||||
type: string
|
||||
}
|
||||
metric {
|
||||
description: "Metric name"
|
||||
type: string
|
||||
}
|
||||
}
|
||||
}
|
||||
task_log_event {
|
||||
description: """A log event associated with a task."""
|
||||
type: object
|
||||
@ -319,6 +343,84 @@
|
||||
}
|
||||
}
|
||||
}
|
||||
"2.7" {
|
||||
description: "Get the debug image events for the requested amount of iterations per each task's metric"
|
||||
request {
|
||||
type: object
|
||||
required: [
|
||||
metrics
|
||||
]
|
||||
properties {
|
||||
metrics {
|
||||
type: array
|
||||
items { "$ref": "#/definitions/task_metric" }
|
||||
description: "List metrics for which the envents will be retreived"
|
||||
}
|
||||
iters {
|
||||
type: integer
|
||||
description: "Max number of latest iterations for which to return debug images"
|
||||
}
|
||||
navigate_earlier {
|
||||
type: boolean
|
||||
description: "If set then events are retreived from later iterations to earlier ones. Otherwise from earlier iterations to the later. The default is True"
|
||||
}
|
||||
refresh {
|
||||
type: boolean
|
||||
description: "If set then scroll will be moved to the latest iterations. The default is False"
|
||||
}
|
||||
scroll_id {
|
||||
type: string
|
||||
description: "Scroll ID of previous call (used for getting more results)"
|
||||
}
|
||||
}
|
||||
}
|
||||
response {
|
||||
type: object
|
||||
properties {
|
||||
metrics {
|
||||
type: array
|
||||
items: { type: object }
|
||||
description: "Debug image events grouped by task metrics and iterations"
|
||||
}
|
||||
scroll_id {
|
||||
type: string
|
||||
description: "Scroll ID for getting more results"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
get_task_metrics{
|
||||
"2.7": {
|
||||
description: "For each task, get a list of metrics for which the requested event type was reported"
|
||||
request {
|
||||
type: object
|
||||
required: [
|
||||
tasks
|
||||
]
|
||||
properties {
|
||||
tasks {
|
||||
type: array
|
||||
items { type: string }
|
||||
description: "Task IDs"
|
||||
}
|
||||
event_type {
|
||||
"description": "Event type"
|
||||
"$ref": "#/definitions/event_type_enum"
|
||||
}
|
||||
}
|
||||
}
|
||||
response {
|
||||
type: object
|
||||
properties {
|
||||
metrics {
|
||||
type: array
|
||||
items { type: object }
|
||||
description: "List of task with their metrics"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
get_task_log {
|
||||
"1.5" {
|
||||
|
@ -2,12 +2,15 @@ import itertools
|
||||
from collections import defaultdict
|
||||
from operator import itemgetter
|
||||
|
||||
import six
|
||||
|
||||
from apierrors import errors
|
||||
from apimodels.events import (
|
||||
MultiTaskScalarMetricsIterHistogramRequest,
|
||||
ScalarMetricsIterHistogramRequest,
|
||||
DebugImagesRequest,
|
||||
DebugImageResponse,
|
||||
MetricEvents,
|
||||
IterationEvents,
|
||||
TaskMetricsRequest,
|
||||
)
|
||||
from bll.event import EventBLL
|
||||
from bll.event.event_metrics import EventMetrics
|
||||
@ -299,7 +302,7 @@ def multi_task_scalar_metrics_iter_histogram(
|
||||
call, company_id, req_model: MultiTaskScalarMetricsIterHistogramRequest
|
||||
):
|
||||
task_ids = req_model.tasks
|
||||
if isinstance(task_ids, six.string_types):
|
||||
if isinstance(task_ids, str):
|
||||
task_ids = [s.strip() for s in task_ids.split(",")]
|
||||
# Note, bll already validates task ids as it needs their names
|
||||
call.result.data = dict(
|
||||
@ -481,7 +484,7 @@ def get_debug_images_v1_7(call, company_id, req_model):
|
||||
|
||||
|
||||
@endpoint("events.debug_images", min_version="1.8", required_fields=["task"])
|
||||
def get_debug_images(call, company_id, req_model):
|
||||
def get_debug_images_v1_8(call, company_id, req_model):
|
||||
task_id = call.data["task"]
|
||||
iters = call.data.get("iters") or 1
|
||||
scroll_id = call.data.get("scroll_id")
|
||||
@ -507,6 +510,53 @@ def get_debug_images(call, company_id, req_model):
|
||||
)
|
||||
|
||||
|
||||
@endpoint(
|
||||
"events.debug_images",
|
||||
min_version="2.7",
|
||||
request_data_model=DebugImagesRequest,
|
||||
response_data_model=DebugImageResponse,
|
||||
)
|
||||
def get_debug_images(call, company_id, req_model: DebugImagesRequest):
|
||||
tasks = set(m.task for m in req_model.metrics)
|
||||
task_bll.assert_exists(call.identity.company, task_ids=tasks, allow_public=True)
|
||||
result = event_bll.debug_images_iterator.get_task_events(
|
||||
company_id=company_id,
|
||||
metrics=[(m.task, m.metric) for m in req_model.metrics],
|
||||
iter_count=req_model.iters,
|
||||
navigate_earlier=req_model.navigate_earlier,
|
||||
refresh=req_model.refresh,
|
||||
state_id=req_model.scroll_id,
|
||||
)
|
||||
|
||||
call.result.data_model = DebugImageResponse(
|
||||
scroll_id=result.next_scroll_id,
|
||||
metrics=[
|
||||
MetricEvents(
|
||||
task=task,
|
||||
metric=metric,
|
||||
iterations=[
|
||||
IterationEvents(iter=iteration["iter"], events=iteration["events"])
|
||||
for iteration in iterations
|
||||
],
|
||||
)
|
||||
for (task, metric, iterations) in result.metric_events
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@endpoint("events.get_task_metrics", request_data_model=TaskMetricsRequest)
|
||||
def get_tasks_metrics(call: APICall, company_id, req_model: TaskMetricsRequest):
|
||||
task_bll.assert_exists(
|
||||
call.identity.company, task_ids=req_model.tasks, allow_public=True
|
||||
)
|
||||
res = event_bll.metrics.get_tasks_metrics(
|
||||
company_id, task_ids=req_model.tasks, event_type=req_model.event_type
|
||||
)
|
||||
call.result.data = {
|
||||
"metrics": [{"task": task, "metrics": metrics} for (task, metrics) in res]
|
||||
}
|
||||
|
||||
|
||||
@endpoint("events.delete_for_task", required_fields=["task"])
|
||||
def delete_for_task(call, company_id, req_model):
|
||||
task_id = call.data["task"]
|
||||
|
@ -4,19 +4,16 @@ Comprehensive test of all(?) use cases of datasets and frames
|
||||
import json
|
||||
import time
|
||||
import unittest
|
||||
from functools import partial
|
||||
from statistics import mean
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
import es_factory
|
||||
from config import config
|
||||
from tests.automated import TestService
|
||||
|
||||
log = config.logger(__file__)
|
||||
|
||||
|
||||
class TestTaskEvents(TestService):
|
||||
def setUp(self, version="1.7"):
|
||||
def setUp(self, version="2.7"):
|
||||
super().setUp(version=version)
|
||||
|
||||
def _temp_task(self, name="test task events"):
|
||||
@ -25,13 +22,14 @@ class TestTaskEvents(TestService):
|
||||
)
|
||||
return self.create_temp("tasks", **task_input)
|
||||
|
||||
def _create_task_event(self, type_, task, iteration):
|
||||
def _create_task_event(self, type_, task, iteration, **kwargs):
|
||||
return {
|
||||
"worker": "test",
|
||||
"type": type_,
|
||||
"task": task,
|
||||
"iter": iteration,
|
||||
"timestamp": es_factory.get_timestamp_millis(),
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
def _copy_and_update(self, src_obj, new_data):
|
||||
@ -39,6 +37,134 @@ class TestTaskEvents(TestService):
|
||||
obj.update(new_data)
|
||||
return obj
|
||||
|
||||
def test_task_metrics(self):
|
||||
tasks = {
|
||||
self._temp_task(): {
|
||||
"Metric1": ["training_debug_image"],
|
||||
"Metric2": ["training_debug_image", "log"],
|
||||
},
|
||||
self._temp_task(): {"Metric3": ["training_debug_image"]},
|
||||
}
|
||||
events = [
|
||||
self._create_task_event(
|
||||
event_type,
|
||||
task=task,
|
||||
iteration=1,
|
||||
metric=metric,
|
||||
variant="Test variant",
|
||||
)
|
||||
for task, metrics in tasks.items()
|
||||
for metric, event_types in metrics.items()
|
||||
for event_type in event_types
|
||||
]
|
||||
self.send_batch(events)
|
||||
self._assert_task_metrics(tasks, "training_debug_image")
|
||||
self._assert_task_metrics(tasks, "log")
|
||||
self._assert_task_metrics(tasks, "training_stats_scalar")
|
||||
|
||||
def _assert_task_metrics(self, tasks: dict, event_type: str):
|
||||
res = self.api.events.get_task_metrics(tasks=list(tasks), event_type=event_type)
|
||||
for task, metrics in tasks.items():
|
||||
res_metrics = next(
|
||||
(tm.metrics for tm in res.metrics if tm.task == task), ()
|
||||
)
|
||||
self.assertEqual(
|
||||
set(res_metrics),
|
||||
set(
|
||||
metric for metric, events in metrics.items() if event_type in events
|
||||
),
|
||||
)
|
||||
|
||||
def test_task_debug_images(self):
|
||||
task = self._temp_task()
|
||||
metric = "Metric1"
|
||||
variants = [("Variant1", 7), ("Variant2", 4)]
|
||||
iterations = 10
|
||||
|
||||
# test empty
|
||||
res = self.api.events.debug_images(
|
||||
metrics=[{"task": task, "metric": metric}],
|
||||
iters=5,
|
||||
)
|
||||
self.assertFalse(res.metrics)
|
||||
|
||||
# create events
|
||||
events = [
|
||||
self._create_task_event(
|
||||
"training_debug_image",
|
||||
task=task,
|
||||
iteration=n,
|
||||
metric=metric,
|
||||
variant=variant,
|
||||
url=f"{metric}_{variant}_{n % unique_images}",
|
||||
)
|
||||
for n in range(iterations)
|
||||
for (variant, unique_images) in variants
|
||||
]
|
||||
self.send_batch(events)
|
||||
|
||||
# init testing
|
||||
unique_images = [unique for (_, unique) in variants]
|
||||
scroll_id = None
|
||||
assert_debug_images = partial(
|
||||
self._assertDebugImages,
|
||||
task=task,
|
||||
metric=metric,
|
||||
max_iter=iterations - 1,
|
||||
unique_images=unique_images,
|
||||
)
|
||||
|
||||
# test forward navigation
|
||||
for page in range(3):
|
||||
scroll_id = assert_debug_images(scroll_id=scroll_id, page=page)
|
||||
|
||||
# test backwards navigation
|
||||
scroll_id = assert_debug_images(
|
||||
scroll_id=scroll_id, page=0, navigate_earlier=False
|
||||
)
|
||||
|
||||
# beyond the latest iteration and back
|
||||
res = self.api.events.debug_images(
|
||||
metrics=[{"task": task, "metric": metric}],
|
||||
iters=5,
|
||||
scroll_id=scroll_id,
|
||||
navigate_earlier=False,
|
||||
)
|
||||
self.assertEqual(len(res["metrics"][0]["iterations"]), 0)
|
||||
assert_debug_images(scroll_id=scroll_id, page=1)
|
||||
|
||||
# refresh
|
||||
assert_debug_images(scroll_id=scroll_id, page=0, refresh=True)
|
||||
|
||||
def _assertDebugImages(
|
||||
self,
|
||||
task,
|
||||
metric,
|
||||
max_iter: int,
|
||||
unique_images: Sequence[int],
|
||||
scroll_id,
|
||||
page: int,
|
||||
iters: int = 5,
|
||||
**extra_params,
|
||||
):
|
||||
res = self.api.events.debug_images(
|
||||
metrics=[{"task": task, "metric": metric}],
|
||||
iters=iters,
|
||||
scroll_id=scroll_id,
|
||||
**extra_params,
|
||||
)
|
||||
data = res["metrics"][0]
|
||||
self.assertEqual(data["task"], task)
|
||||
self.assertEqual(data["metric"], metric)
|
||||
left_iterations = max(0, max(unique_images) - page * iters)
|
||||
self.assertEqual(len(data["iterations"]), min(iters, left_iterations))
|
||||
for it in data["iterations"]:
|
||||
events_per_iter = sum(
|
||||
1 for unique in unique_images if unique > max_iter - it["iter"]
|
||||
)
|
||||
self.assertEqual(len(it["events"]), events_per_iter)
|
||||
return res.scroll_id
|
||||
|
||||
def test_task_logs(self):
|
||||
events = []
|
||||
task = self._temp_task()
|
||||
|
Loading…
Reference in New Issue
Block a user