diff --git a/docs/faq.md b/docs/faq.md
index 61939a6..8b69a98 100644
--- a/docs/faq.md
+++ b/docs/faq.md
@@ -3,329 +3,3 @@
## **NOTE**: This page's information is deprecated. See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) for up-to-date deployment instructions
-Launching **trains-server**
-
-* How do I launch **trains-server** on:
-
- * [Stand alone Linux Ubuntu systems?](#ubuntu)
-
- * [macOS?](#mac-osx)
-
- * [Windows 10?](#docker_compose_win10)
-
-* [How do I restart trains-server?](#restart)
-
-Kubernetes
-
-* [Can I deploy trains-server on Kubernetes clusters?](#kubernetes)
-
-* [Can I create a Helm Chart for trains-server Kubernetes deployment?](#helm)
-
-Configuration
-
-* [How do I configure trains-server for sub-domains and load balancers?](#sub-domains)
-
-* [Can I add web login authentication to trains-server?](#web-auth)
-
-* [Can I modify the non-responsive experiment watchdog settings?](#watchdog)
-
-Troubleshooting
-
-* [How do I fix Docker upgrade errors?](#common-docker-upgrade-errors)
-
-* [Why is web login authentication not working?](#port-conflict)
-
-## Launching **trains-server**
-
-### How do I launch trains-server on stand alone Linux Ubuntu systems?
-
-To launch **trains-server** on a stand alone Linux Ubuntu:
-
-1. Install [docker for Ubuntu](https://docs.docker.com/install/linux/docker-ce/ubuntu/).
-
-1. Install `docker-compose` using the following commands (for more detailed information, see the [Install Docker Compose](https://docs.docker.com/compose/install/) in the Docker documentation):
-
- sudo curl -L "https://github.com/docker/compose/releases/download/1.24.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
- sudo chmod +x /usr/local/bin/docker-compose
-
-1. Remove the previous installation of **trains-server**.
-
- **WARNING**: This clears all existing **Trains** databases.
-
- sudo rm -R /opt/trains/
-
-1. Create local directories for the databases and storage.
-
- sudo mkdir -p /opt/trains/data/elastic
- sudo mkdir -p /opt/trains/data/mongo/db
- sudo mkdir -p /opt/trains/data/mongo/configdb
- sudo mkdir -p /opt/trains/logs
- sudo mkdir -p /opt/trains/config
- sudo mkdir -p /opt/trains/data/fileserver
- sudo chown -R 1000:1000 /opt/trains
-
-1. Clone the [trains-server](https://github.com/allegroai/trains-server) repository and change directories to the new **trains-server** directory.
-
- git clone https://github.com/allegroai/trains-server.git
- cd trains-server
-
-1. Run `docker-compose`
-
- /usr/local/bin/docker-compose -f docker-compose.yml up
-
- Your server is now running on [http://localhost:8080](http://localhost:8080)
-
-### How do I launch trains-server on macOS?
-
-To launch **trains-server** on macOS:
-
-1. Install [docker for macOS](https://docs.docker.com/docker-for-mac/install/).
-
-1. Configure [Docker](https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode).
-
- screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty
- sysctl -w vm.max_map_count=262144
-
-1. Create local directories for the databases and storage.
-
- sudo mkdir -p /opt/trains/data/elastic
- sudo mkdir -p /opt/trains/data/mongo/db
- sudo mkdir -p /opt/trains/data/mongo/configdb
- sudo mkdir -p /opt/trains/data/redis
- sudo mkdir -p /opt/trains/logs
- sudo mkdir -p /opt/trains/config
- sudo mkdir -p /opt/trains/data/fileserver
- sudo chown -R $(whoami):staff /opt/trains
-
-1. Open the Docker app, select **Preferences**, and then on the **File Sharing** tab, add `/opt/trains`.
-
-1. Clone the [trains-server](https://github.com/allegroai/trains-server) repository and change directories to the new **trains-server** directory.
-
- git clone https://github.com/allegroai/trains-server.git
- cd trains-server
-
-1. Run `docker-compose` with the docker compose file.
-
- docker-compose -f docker-compose.yml up
-
- Your server is now running on [http://localhost:8080](http://localhost:8080)
-
-### How do I launch trains-server on Windows 10?
-
-You can run **trains-server** on Windows 10 using Docker Desktop for Windows (see the Docker [System Requirements](https://docs.docker.com/docker-for-windows/install/#system-requirements)).
-
-To launch **trains-server** on Windows 10:
-
-1. Install the Docker Desktop for Windows application by either:
-
- * following the [Install Docker Desktop on Windows](https://docs.docker.com/docker-for-windows/install/) instructions.
- * running the Docker installation [wizard](https://hub.docker.com/?overlay=onboarding).
-
-1. Increase the memory allocation in Docker Desktop to `4GB`.
-
- 1. In your Windows notification area (system tray), right click the Docker icon.
-
- 1. Click *Settings*, *Advanced*, and then set the memory to at least `4096`.
-
- 1. Click *Apply*.
-
-1. Create local directories for data and logs. Open PowerShell and execute the following commands:
-
- cd c:
- mkdir c:\opt\trains\data
- mkdir c:\opt\trains\logs
-
-1. Download the **trains-server** docker-compose YAML file [docker-compose-win10.yml](https://raw.githubusercontent.com/allegroai/trains-server/master/docker-compose-win10.yml) as `c:\opt\trains\docker-compose.yml`.
-
-1. Run `docker-compose`. In PowerShell, execute the following commands:
-
- docker-compose -f up docker-compose-win10.yml
-
- Your server is now running on [http://localhost:8080](http://localhost:8080)
-
-### How do I restart trains-server?
-
-Restart *trains-server* by first stopping the Docker containers and then restarting them.
-
- ```bash
- docker-compose down
- docker-compose up -f docker-compose.yml
- ```
-
- **Note**: If you are using a different docker-compose YAML file, specify that file.
-
-## Kubernetes
-
-### Can I deploy trains-server on Kubernetes clusters?
-
-**trains-server** supports Kubernetes. See [trains-server-k8s](https://github.com/allegroai/trains-server-k8s)
-which contains the YAML files describing the required services and detailed instructions for deploying
-**trains-server** to a Kubernetes clusters.
-
-### Can I create a Helm Chart for trains-server Kubernetes deployment?
-
-**trains-server** supports creating a Helm chart for Kubernetes deployment. See [trains-server-helm](https://github.com/allegroai/trains-server-helm)
-which you can use to create a Helm chart for **trains-server** and contains detailed instructions for deploying
-**trains-server** to a Kubernetes clusters using Helm.
-
-## Configuration
-
-### How do I configure trains-server for sub-domains and load balancers?
-
-You can configure **trains-server** for sub-domains and a load balancer.
-
-For example, if your domain is `trains.mydomain.com` and your sub-domains are `app` and `api`, then do the following:
-
-1. If you are not using the current **trains-server** version, [upgrade](https://github.com/allegroai/trains-server#upgrade) **trains-server**.
-
-1. Add the following to `/opt/trains/config/apiserver.conf`:
-
- auth {
- cookies {
- httponly: true
- secure: true
- domain: ".trains.mydomain.com"
- max_age: 99999999999
- }
- }
-
-1. Use the following load balancer configuration:
-
- * Listeners:
- * Optional: HTTP listener, that redirects all traffic to HTTPS.
- * HTTPS listener for `app.` forwarded to `AppTargetGroup`
- * HTTPS listener for `api.` forwarded to `ApiTargetGroup`
- * HTTPS listener for `files.` forwarded to `FilesTargetGroup`
- * Target groups:
- * `AppTargetGroup`: HTTP based target group, port `8080`
- * `ApiTargetGroup`: HTTP based target group, port `8008`
- * `FilesTargetGroup`: HTTP based target group, port `8081`
- * Security and routing:
- * Load balancer: make sure the load balancers are able to receive traffic from the relevant IP addresses (Security groups and Subnets definitions).
- * Instances: make sure the load balancers are able to access the instances, using the relevant ports (Security groups definitions).
-
-1. Run the Docker containers with our updated `docker run` commands (see [Launching Docker Containers](#https://github.com/allegroai/trains-server#launching-docker-containers)).
-
-### Can I add web login authentication to trains-server?
-
-By default, anyone can login to the **trains-server** Web-App.
-You can configure the **trains-server** to allow only a specific set of users to access the system.
-
-To add web login authentication to **trains-server**:
-
-1. If you are not using the current **trains-server** version, then [upgrade](https://github.com/allegroai/trains-server#upgrade).
-
-1. In `/opt/trains/config/apiserver.conf`, add the `auth` section and in it specify the users, for example:
-
- **Note**: A sample `apiserver.conf` configuration file is also available [here](https://github.com/allegroai/trains-server/blob/master/docs/apiserver.conf).
-
- auth {
- # Fixed users login credentials
- # No other user will be able to login
- fixed_users {
- enabled: true
- users: [
- {
- username: "jane"
- password: "12345678"
- name: "Jane Doe"
- },
- {
- username: "john"
- password: "12345678"
- name: "John Doe"
- },
- ]
- }
- }
-
-1. Restart **trains-server** (see the [Restarting trains-server](#restart) FAQ).
-
-### Can I modify the experiment watchdog settings?
-
-The non-responsive experiment watchdog monitors experiments that were not updated for a specified period of time
-and marks them as `aborted`. The watchdog is always active.
-
-You can modify the following settings for the watchdog:
-
-* the time threshold (in seconds) of experiment inactivity (default value is 7200 seconds (2 hours))
-* the time interval (in seconds) between watchdog cycles
-
-To change the watchdog's settings:
-
-1. In `/opt/trains/config`, add the `services.conf` file and in it specify the watchdog settings, for example:
-
- **Note**: A sample watchdog `services.conf` configuration file is also available [here](https://github.com/allegroai/trains-server/blob/master/docs/services.conf).
-
- tasks {
- non_responsive_tasks_watchdog {
- # In-progress tasks that haven't been updated for at least 'value' seconds will be stopped by the watchdog
- threshold_sec: 7200
-
- # Watchdog will sleep for this number of seconds after each cycle
- watch_interval_sec: 900
- }
- }
-
-1. Restart **trains-server** (see the [Restarting trains-server](#restart) FAQ).
-
-## Troubleshooting
-
-### How do I fix Docker upgrade errors?
-
-To resolve the Docker error "... The container name "/trains-???" is already in use by ...", try removing deprecated images:
-
- docker rm -f $(docker ps -a -q)
-
-### Why is web login authentication not working?
-
-A port conflict between the **trains-server** MongoDB and / or Elastic instances, and other
-instances running on your system may prevent web login authentication
-from working correctly.
-
-**trains-server** uses the following default ports which may be in conflict with other instances:
-
-* MongoDB port `27017`
-* Elastic port `9200`
-
-You can check for port conflicts in the logs in `/opt/trains/log`.
-
-If a port conflict occurs, change the MongoDB and / or Elastic ports in the `docker-compose.yml`,
-and then run the Docker compose commands to restart the **trains-server** instance.
-
-To change the MongoDB and / or Elastic ports for **trains-server**:
-
-1. Edit the `docker-compose.yml` file.
-
-1. In the `services/trainsserver/environment` section, add the following environment variable(s):
-
- * For MongoDB:
-
- MONGODB_SERVICE_PORT:
-
- * For Elastic:
-
- ELASTIC_SERVICE_PORT:
-
- For example:
-
- MONGODB_SERVICE_PORT: 27018
- ELASTIC_SERVICE_PORT: 9201
-
-1. For MongoDB, in the `services/mongo/ports` section, expose the new MongoDB port:
-
- :27017
-
- For example:
-
- 20718:27017
-
-1. For Elastic, in the `services/elasticsearch/ports` section, expose the new Elastic port:
-
- :9200
-
- For example:
-
- 9201:9200
-
-2. Restart **trains-server** (see the [Restarting trains-server](#restart) FAQ).
\ No newline at end of file
diff --git a/docs/install_aws.md b/docs/install_aws.md
index c9e7860..f734cdd 100644
--- a/docs/install_aws.md
+++ b/docs/install_aws.md
@@ -1,301 +1,5 @@
-# Deploying **trains-server** on AWS
+# Deploying ClearML Server on AWS
-## **NOTE**: These instructions are deprecated. See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) for up-to-date deployment instructions
-
-To easily deploy **trains-server** on AWS, use one of our pre-built Amazon Machine Images (AMIs).
-We provide AMIs per region for each released version of **trains-server**, see [Released versions](#released-versions) below.
-
-Once the AMI is up and running, [configure the Trains client](https://github.com/allegroai/trains/blob/master/README.md#configuration) to use your **trains-server**.
-The service port numbers on our **trains-server** AMIs:
-
-- Web application: `8080`
-- API Server: `8008`
-- File Server: `8081`
-
-The persistent storage configuration:
-
-- MongoDB: `/opt/trains/data/mongo/`
-- ElasticSearch: `/opt/trains/data/elastic/`
-- File Server: `/mnt/fileserver/`
-
-For examples and use cases, check the [Trains usage examples](https://github.com/allegroai/trains/blob/master/docs/trains_examples.md).
-
-For instructions on launching a custom AMI from the EC2 console, see the [AWS Knowledge Center](https://aws.amazon.com/premiumsupport/knowledge-center/launch-instance-custom-ami/) or detailed instructions in the [AWS Documentation](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html).
-
-The minimum recommended amount of RAM is 8GB. For example, **t3.large** or **t3a.large** would have the minimum recommended amount of resources.
-
-## Upgrading
-
-To upgrade **trains-server** on an existing EC2 instance based on one of these AMIs, SSH into the instance and follow the [upgrade instructions](../README.md#upgrade) for **trains-server**.
-
-### Note on upgrading AMIs to v0.12
-
-This upgrade includes the automatically updated AMI in Version 0.12. It also includes an additional REDIS docker to the **trains-server** setup.
-
-To upgrade the AMI:
-
-1. SSH to the EC2 machine running one of the `Latest Version AMI's`
-2. Execute the following bash commands
- ```bash
- sudo bash
- echo "" >> /usr/bin/start_or_update_server.sh
- echo "sudo mkdir -p \${datadir}/redis" >> /usr/bin/start_or_update_server.sh
- echo "sudo docker stop trains-redis || true && sudo docker rm -v trains-redis || true" >> /usr/bin/start_or_update_server.sh
- echo "echo never | sudo tee -a /sys/kernel/mm/transparent_hugepage/enabled" >> /usr/bin/start_or_update_server.sh
- echo "sudo sysctl vm.overcommit_memory=1" >> /usr/bin/start_or_update_server.sh
- echo "sudo docker run -d --restart=always --name=trains-redis -v \${datadir}/redis:/data --network=host redis:5 redis-server" >> /usr/bin/start_or_update_server.sh
- ```
-3. Reboot the EC2 machine
+## See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_aws_ec2_ami/) for up-to-date deployment instructions
-## Released versions
-
-The following sections contain lists of AMI Image IDs, per region, for each released **trains-server** version.
-
-### Latest version AMI - v0.15.1 (auto update)
-
-For easier upgrades, the following AMIs automatically update to the latest release every reboot:
-
-* **eu-north-1** : ami-0f30c84b905d354b9
-* **ap-south-1** : ami-050e7acec52c8c74e
-* **eu-west-3** : ami-03911c5b5bc77ef75
-* **eu-west-2** : ami-0a5ed8aa2573ccc70
-* **eu-west-1** : ami-0a53c65e922ec0611
-* **ap-northeast-2** : ami-08cd017a37b8e8aab
-* **ap-northeast-1** : ami-056b3ca1ad5af9322
-* **sa-east-1** : ami-01ddc9325bafb400c
-* **ca-central-1** : ami-0fc3cbbd982b18b45
-* **ap-southeast-1** : ami-04c7a358df7002ef5
-* **ap-southeast-2** : ami-0eeaf54231b4ae22a
-* **eu-central-1** : ami-00b8e44041f8175fd
-* **us-east-2** : ami-0ac7deebb3f738f6d
-* **us-west-1** : ami-06bc07deb8b8c44d6
-* **us-west-2** : ami-01ba85ffe79a422f1
-* **us-east-1** : ami-04cf5a66cb4928ac3
-
-### v0.15.1 (static update)
-
-* **eu-north-1** : ami-0cd314e267426d1b7
-* **ap-south-1** : ami-086182cbe29151f96
-* **eu-west-3** : ami-0062366012182815b
-* **eu-west-2** : ami-022b8f2e32a9d18d0
-* **eu-west-1** : ami-0d8cf60446e09aa3d
-* **ap-northeast-2** : ami-0d4c168a815b56889
-* **ap-northeast-1** : ami-0daf7887db1053ae4
-* **sa-east-1** : ami-020a759a3ba4ff22b
-* **ca-central-1** : ami-0c10b5e04b707f3e3
-* **ap-southeast-1** : ami-0f61bb3529a165fcd
-* **ap-southeast-2** : ami-032dcdc82749c66c5
-* **eu-central-1** : ami-08f364f32d2eb3bae
-* **us-east-2** : ami-0b7efc3591803eba4
-* **us-west-1** : ami-08b2df27b0ada6faf
-* **us-west-2** : ami-0693029c4bad28816
-* **us-east-1** : ami-0200954fa9c2819ff
-
-### v0.15.0 (static update)
-
-* **eu-north-1** : ami-0bef15c03eab64c0c
-* **ap-south-1** : ami-06ac6248e583e2cd2
-* **eu-west-3** : ami-0541d86ef47a5714e
-* **eu-west-2** : ami-01381ef4c4ed22482
-* **eu-west-1** : ami-064626a0dd38b21f1
-* **ap-northeast-2** : ami-0a2490a7a3a8aa675
-* **ap-northeast-1** : ami-063f1de819a2524b8
-* **sa-east-1** : ami-07980486741b94987
-* **ca-central-1** : ami-0ced3b8b21ded839e
-* **ap-southeast-1** : ami-0c493c5093fde8741
-* **ap-southeast-2** : ami-0320a727eccb8dc6c
-* **eu-central-1** : ami-0aa85cfc78674c526
-* **us-east-2** : ami-01791485051e1880c
-* **us-west-1** : ami-0d8eade4d5888ea73
-* **us-west-2** : ami-02ceaef72cdf60f7e
-* **us-east-1** : ami-0fc3f9d1d0eba1d62
-
-### v0.14.2 (static update)
-
-* **eu-north-1** : ami-006d491e9e8869248
-* **ap-south-1** : ami-0e55ec221687f98e7
-* **eu-west-3** : ami-06ad9cf3c05c83e91
-* **eu-west-2** : ami-0d05839268e748cff
-* **eu-west-1** : ami-0d14c297789ce0d7a
-* **ap-northeast-2** : ami-0d7fd775f0e76cc6f
-* **ap-northeast-1** : ami-0c0a6e1daeb3f7a9c
-* **sa-east-1** : ami-01e0c5e30e94ec887
-* **ca-central-1** : ami-07a31896832734897
-* **ap-southeast-1** : ami-0886d5b2d4b7fccd5
-* **ap-southeast-2** : ami-0397d5a2db3c356fe
-* **eu-central-1** : ami-0629f26eea22f5c17
-* **us-east-2** : ami-0499c3d7bb45a1a6e
-* **us-west-1** : ami-02fa8a961a4daf9f0
-* **us-west-2** : ami-05c711cfab4342468
-* **us-east-1** : ami-0b97d99a08012c726
-
-### v0.14.1 (static update)
-
-* **eu-north-1** : ami-036defe1885dced2e
-* **ap-south-1** : ami-0b403aa1da6a5dc17
-* **eu-west-3** : ami-0d30c2d330d1255c4
-* **eu-west-2** : ami-06f0e8d075e50a029
-* **eu-west-1** : ami-0da721d874f282b6d
-* **ap-northeast-2** : ami-03bffe94675dd5f8c
-* **ap-northeast-1** : ami-0f96520d646423673
-* **sa-east-1** : ami-0c2f706a3b7d97282
-* **ca-central-1** : ami-0da74525dcfd74e32
-* **ap-southeast-1** : ami-066368a21cf6d232b
-* **ap-southeast-2** : ami-0bfd09170067f7318
-* **eu-central-1** : ami-06aa99b1c41492986
-* **us-east-2** : ami-065c1880f59d03272
-* **us-west-1** : ami-0b7f6b896f5058eba
-* **us-west-2** : ami-0041e10ca68eef29a
-* **us-east-1** : ami-0b7125e4305bbd7eb
-
-### v0.14.0 (static update)
-* **eu-north-1** : ami-02de71586ec496e38
-* **ap-south-1** : ami-074b03849b51852e5
-* **eu-west-3** : ami-022c388835e0eeb03
-* **eu-west-2** : ami-0a151c236c6b27707
-* **eu-west-1** : ami-06de69b06b4e73312
-* **ap-northeast-2** : ami-0ee821b72d9f669b1
-* **ap-northeast-1** : ami-03687ae215e64e100
-* **sa-east-1** : ami-01eb83364b7f667af
-* **ca-central-1** : ami-02e9b35f9c90377e6
-* **ap-southeast-1** : ami-0d3ab5ab0048fea51
-* **ap-southeast-2** : ami-0bd39d908fe3a9e06
-* **eu-central-1** : ami-0b8638701311b35c4
-* **us-east-2** : ami-02ff039693fc3a614
-* **us-west-1** : ami-08634f7dfb608a9a7
-* **us-west-2** : ami-034d693ef742b9333
-* **us-east-1** : ami-0b828b05c323dde7f
-
-### v0.13.0 (static update)
-* **eu-north-1** : ami-0d9c74a015e7510d8
-* **ap-south-1** : ami-02acd6dd0659bb5c1
-* **eu-west-3** : ami-0f0cc5cb6d9afd194
-* **eu-west-2** : ami-0298fdc0860206ed9
-* **eu-west-1** : ami-0cdc072e528401d5e
-* **ap-northeast-2** : ami-0055579cc95b0e53e
-* **ap-northeast-1** : ami-0ced7becb9b83b5d0
-* **sa-east-1** : ami-033345d0f16a1b5e4
-* **ca-central-1** : ami-06c63b05aed47ae67
-* **ap-southeast-1** : ami-09f0355f367f30602
-* **ap-southeast-2** : ami-0bd2314163ce0fba0
-* **eu-central-1** : ami-05fbae957df63e366
-* **us-east-2** : ami-050c51b5b4074d3fc
-* **us-west-1** : ami-06ad513073d4e5a19
-* **us-west-2** : ami-0c96e1361d1d4ca94
-* **us-east-1** : ami-07b669040d1eea213
-
-### v0.12.1 (static update)
-* **eu-north-1** : ami-003118a8103286d84
-* **ap-south-1** : ami-02dfe86baa48e096f
-* **eu-west-3** : ami-0cc1f01267d2a780d
-* **eu-west-2** : ami-0e4c8332e5ce09585
-* **eu-west-1** : ami-03459a2f0b0a3b1ab
-* **ap-northeast-2** : ami-08f6c2aed3a53f24c
-* **ap-northeast-1** : ami-0b798eab95a7c5435
-* **sa-east-1** : ami-0d3ee166c09f0d1b2
-* **ca-central-1** : ami-00a758c56bd63acd5
-* **ap-southeast-1** : ami-0be64d4988cd03fbb
-* **ap-southeast-2** : ami-02087310d43a63f31
-* **eu-central-1** : ami-097bbefeac0c74225
-* **us-east-2** : ami-07eda256712b90f4d
-* **us-west-1** : ami-02ef2b55cbd01c7df
-* **us-west-2** : ami-037c6176ef4735360
-* **us-east-1** : ami-08715c20c0e3f1c15
-
-### v0.12.0 (static update)
-
-* **eu-north-1** : ami-03ff8ab48cd43e77e
-* **ap-south-1** : ami-079c1a41ff836487c
-* **eu-west-3** : ami-0121ef0398ae87ab0
-* **eu-west-2** : ami-09f0f97654d8c79de
-* **eu-west-1** : ami-0b7ba303f757bfcd9
-* **ap-northeast-2** : ami-053f416517b5f40a6
-* **ap-northeast-1** : ami-056dff06c698c2d9d
-* **sa-east-1** : ami-017ab655119258639
-* **ca-central-1** : ami-03bf5fa1d86ac97f6
-* **ap-southeast-1** : ami-0e667958002b0360c
-* **ap-southeast-2** : ami-091f1b69cb43b1933
-* **eu-central-1** : ami-068ec2f0e98c26541
-* **us-east-2** : ami-0524bbdc1b64ff83f
-* **us-west-1** : ami-0b4facd7534e393c9
-* **us-west-2** : ami-0018d5a7e58966848
-* **us-east-1** : ami-08f24178fc14a84d2
-
-### v0.11.0 (static update)
-
-* **eu-north-1** : ami-0cbe338f058018c97
-* **ap-south-1** : ami-06d72ff894f7a5e5d
-* **eu-west-3** : ami-00f2a45d67df2d2f3
-* **eu-west-2** : ami-0627ae688f4533237
-* **eu-west-1** : ami-00bf924ccb0354418
-* **ap-northeast-2** : ami-0800edf1d1dec1da8
-* **ap-northeast-1** : ami-07b2ed9709cdc4b15
-* **sa-east-1** : ami-0012c1648618b812c
-* **ca-central-1** : ami-02870b965d002fc8a
-* **ap-southeast-1** : ami-068ec23abf2473192
-* **ap-southeast-2** : ami-06664624728b5e01a
-* **eu-central-1** : ami-05f2a9304f237a6f0
-* **us-east-2** : ami-0ec242e6dca2b72b9
-* **us-west-1** : ami-050b6577acf246ceb
-* **us-west-2** : ami-0e384b6f78bf96ebe
-* **us-east-1** : ami-0a7b46f907d5d9c4a
-
-### v0.10.1 (static update)
-
-* **eu-north-1** : ami-09937ec4d18350c32
-* **ap-south-1** : ami-089d6ba7541ec4c7f
-* **eu-west-3** : ami-0accb1a94bdd5c5c1
-* **eu-west-2** : ami-0dd2c97bc678b8570
-* **eu-west-1** : ami-07a38865cbe7ca3cb
-* **ap-northeast-2** : ami-09aa0b7fe1cf3dd55
-* **ap-northeast-1** : ami-0905e7d1543e5ed36
-* **sa-east-1** : ami-08c0627daa67d7372
-* **ca-central-1** : ami-034add081712ff648
-* **ap-southeast-1** : ami-0c6caee3689b6e066
-* **ap-southeast-2** : ami-04994afd8dae5b417
-* **eu-central-1** : ami-06b10f8c30e1434f1
-* **us-east-2** : ami-0d3abe7a1fec535cc
-* **us-west-1** : ami-02bb610b70c55018b
-* **us-west-2** : ami-0d1cb8ba7de246ff0
-* **us-east-1** : ami-049ccba6abdb40cba
-
-### v0.10.0 (static update)
-
-* **eu-north-1** : ami-05ba33c763877e54e
-* **ap-south-1** : ami-0529eec569161cae5
-* **eu-west-3** : ami-03cb9396f63e26ff6
-* **eu-west-2** : ami-0dd28cc97283cc201
-* **eu-west-1** : ami-059cf379ae14b0a24
-* **ap-northeast-2** : ami-031409d71f1280616
-* **ap-northeast-1** : ami-0171437c68b3660aa
-* **sa-east-1** : ami-0eb440a3b6e591c7a
-* **ca-central-1** : ami-097da9ec155ee654a
-* **ap-southeast-1** : ami-0ab7ff3ea09826e39
-* **ap-southeast-2** : ami-00969c550ef2d1f60
-* **eu-central-1** : ami-02246400c51990acb
-* **us-east-2** : ami-0cafc1d730381d6fa
-* **eu-central-1** : ami-02246400c51990acb
-* **us-west-1** : ami-0e82a98ddbe995a65
-* **us-west-2** : ami-04a522ecb2250fb44
-* **us-east-1** : ami-0a66ddbd50959f91e
-
-### v0.9.0 (static update)
-
-* **us-east-1** : ami-0991ad536ecbacdac
-* **eu-north-1** : ami-07cbcdff501b14afe
-* **ap-south-1** : ami-014cf398b00d4db83
-* **eu-west-3** : ami-0396ba51e9b733581
-* **eu-west-2** : ami-09134f4c7a20bad09
-* **eu-west-1** : ami-00427ed0a1bbfa7b0
-* **ap-northeast-2** : ami-041756675ca1be954
-* **ap-northeast-1** : ami-0c09ebad05c9128ff
-* **sa-east-1** : ami-017a8de4e8d1e8c8e
-* **ca-central-1** : ami-049ec444470f852be
-* **ap-southeast-1** : ami-0c919b8f821a6c635
-* **ap-southeast-2** : ami-04844a0594712d27b
-* **eu-central-1** : ami-0b4e756e0f7c0617d
-* **us-east-2** : ami-03b01914b07428488
-* **us-west-1** : ami-0cf4768e9d47ed076
-* **us-west-2** : ami-0b145f37da31eb9fb
-
diff --git a/docs/install_gcp.md b/docs/install_gcp.md
index 59ab441..fba8dcd 100644
--- a/docs/install_gcp.md
+++ b/docs/install_gcp.md
@@ -1,78 +1,3 @@
-# Deploying Trains Server on Google Cloud Platform
+# Deploying ClearML Server on Google Cloud Platform
-# **NOTE**: These instructions are deprecated. See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) for up-to-date deployment instructions
-
-To easily deploy Trains Server on GCP, use one of our pre-built GCP Custom Images.
-We provide Custom Images for each released version of Trains Server, see [Released versions](#released-versions) below.
-
-Once your GCP instance is up and running using our Custom Image, [configure the Trains client](https://github.com/allegroai/trains/blob/master/README.md#configuration) to use your **trains-server**.
-
-#### Default Trains Server Service ports
-The service port numbers on our Trains Server GCP Custom Image are:
-
-- Web application: `8080`
-- API Server: `8008`
-- File Server: `8081`
-
-#### Default Trains Server Storage paths
-The persistent storage configuration:
-
-- MongoDB: `/opt/trains/data/mongo/`
-- ElasticSearch: `/opt/trains/data/elastic/`
-- File Server: `/mnt/fileserver/`
-
-For examples and use cases, check the [Trains usage examples](https://github.com/allegroai/trains/blob/master/docs/trains_examples.md).
-
-## Importing the Custom Image to your GCP account
-
-In order to launch an instance using the Trains Server GCP Custom Image, you'll need to import the image to your custom images list.
-
-**Note:** there's **no need** to upload the image file to Google Cloud Storage - we already provide links to image files stored in Google Storage
-
-To import the image to your custom images list:
-1. In the Cloud Console, go to the [Images](https://console.cloud.google.com/compute/images) page.
-1. At the top of the page, click **Create image**.
-1. In the **Name** field, specify a unique name for the image.
-1. Optionally, specify an image family for your new image, or configure specific encryption settings for the image.
-1. Click the **Source** menu and select **Cloud Storage file**.
-1. Enter the Trains Server image bucket path (see [Trains Server GCP Custom Image](#released-versions)), for example:
- `allegro-files/trains-server/trains-server.tar.gz`
-1. Click the **Create** button to import the image. The process can take several minutes depending on the size of the boot disk image.
-
-For more information see [Import the image to your custom images list](https://cloud.google.com/compute/docs/import/import-existing-image#import_image) in the [Compute Engine Documentation](https://cloud.google.com/compute/docs).
-
-## Launching an instance with a Custom Image
-
-For instructions on launching an instance using a GCP Custom Image, see the [Manually importing virtual disks](https://cloud.google.com/compute/docs/import/import-existing-image#overview) in the [Compute Engine Documentation](https://cloud.google.com/compute/docs).
-For more information on Custom Images, see [Custom Images](https://cloud.google.com/compute/docs/images#custom_images) in the Compute Engine Documentation.
-
-The minimum recommended requirements for Trains Server are:
-- 2 vCPUs
-- 7.5GB RAM
-
-## Upgrading
-
-To upgrade **trains-server** on an existing GCP instance based on one of these Custom Images, SSH into the instance and follow the [upgrade instructions](../README.md#upgrade) for **trains-server**.
-
-## Network and Security
-
-Please make sure your instance is properly secured.
-
-If not specifically set, a GCP instance will use default firewall rules that allow public access to various ports.
-If your instance is open for public access, we recommend you follow best practices for access management, including:
-- Allow access only to the specific ports used by Trains Server (see [Default Trains Server Service ports](#default-trains-server-service-ports)). Remember to allow access to port `443` if `https` access is configured for your instance.
-- Configure Trains Server to use fixed user names and passwords (see [Can I add web login authentication to trains-server?](./faq.md#web-auth))
-
-## Released versions
-
-The following sections contain lists of Custom Image URLs (exported in different formats) for each released **trains-server** version.
-
-### Latest version image
-
-- https://storage.googleapis.com/allegro-files/trains-server/trains-server.tar.gz
-
-### All released images
-
-- v0.15.1 - https://storage.googleapis.com/allegro-files/trains-server/trains-server-0-15-1.tar.gz
-- v0.15.0 - https://storage.googleapis.com/allegro-files/trains-server/trains-server-0-15-0.tar.gz
-- v0.14.1 - https://storage.googleapis.com/allegro-files/trains-server/trains-server-0-14-1.tar.gz
\ No newline at end of file
+# See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_gcp) for up-to-date deployment instructions
diff --git a/docs/install_linux_mac.md b/docs/install_linux_mac.md
index 7349bff..6324349 100644
--- a/docs/install_linux_mac.md
+++ b/docs/install_linux_mac.md
@@ -1,99 +1,3 @@
-# Launching the **trains-server** Docker in Linux or macOS
+# Launching ClearML Server Docker in Linux or macOS
-## **NOTE**: These instructions are deprecated. See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) for up-to-date deployment instructions
-
-For Linux or macOS, use our pre-built Docker image for easy deployment. The latest Docker images can be found [here](https://hub.docker.com/r/allegroai/trains).
-
-For Linux users:
-
-* You must be logged in as a user with sudo privileges.
-* Use `bash` for all command-line instructions in this installation.
-
-To launch **trains-server** on Linux or macOS:
-
-1. Install Docker.
-
- * Linux - see [Docker for Ubuntu](https://docs.docker.com/install/linux/docker-ce/ubuntu/).
- * macOS - see [Docker for macOS](https://docs.docker.com/docker-for-mac/install/).
-
-1. Verify the Docker CE installation. Execute the command:
-
- docker run hello-world
-
- The expected is output is:
-
- Hello from Docker!
- This message shows that your installation appears to be working correctly.
- To generate this message, Docker took the following steps:
-
- 1. The Docker client contacted the Docker daemon.
- 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amd64)
- 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading.
- 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal.
-
-1. For Linux only, install `docker-compose`. Execute the following commands (for more information, see [Install Docker Compose](https://docs.docker.com/compose/install/) in the Docker documentation):
-
- sudo curl -L "https://github.com/docker/compose/releases/download/1.24.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
- sudo chmod +x /usr/local/bin/docker-compose
-
-1. Increase `vm.max_map_count` for ElasticSearch docker.
-
- Linux:
-
- echo "vm.max_map_count=262144" > /tmp/99-trains.conf
- sudo mv /tmp/99-trains.conf /etc/sysctl.d/99-trains.conf
- sudo sysctl -w vm.max_map_count=262144
- sudo service docker restart
-
- macOS:
-
- screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty
- sysctl -w vm.max_map_count=262144
-
-
-1. Remove any previous installation of **trains-server**.
-
- **WARNING**: This clears all existing **Trains** databases.
-
- sudo rm -R /opt/trains/
-
-1. Create local directories for the databases and storage.
-
- sudo mkdir -p /opt/trains/data/elastic
- sudo mkdir -p /opt/trains/data/mongo/db
- sudo mkdir -p /opt/trains/data/mongo/configdb
- sudo mkdir -p /opt/trains/data/redis
- sudo mkdir -p /opt/trains/logs
- sudo mkdir -p /opt/trains/config
- sudo mkdir -p /opt/trains/data/fileserver
-
-1. For macOS only, open the Docker app, select **Preferences**, and then on the **File Sharing** tab, add `/opt/trains`.
-
-1. Grant access to the Dockers.
-
- Linux:
-
- sudo chown -R 1000:1000 /opt/trains
-
- macOS:
-
- sudo chown -R $(whoami):staff /opt/trains
-
-1. Download the **trains-server** docker-compose YAML file.
-
- cd /opt/trains
- curl https://raw.githubusercontent.com/allegroai/trains-server/master/docker-compose.yml -o docker-compose.yml
-
-1. Run `docker-compose` with the downloaded configuration file.
-
- docker-compose -f docker-compose.yml up
-
- Your server is now running on [http://localhost:8080](http://localhost:8080) and the following ports are available:
-
- * Web server on port `8080`
- * API server on port `8008`
- * File server on port `8081`
-
-## Next Step
-
-Configure the [Trains client for trains-server](https://github.com/allegroai/trains/blob/master/README.md#configuration).
+## See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_linux_mac) for up-to-date deployment instructions
diff --git a/docs/install_win.md b/docs/install_win.md
index 3334be9..c99eb34 100644
--- a/docs/install_win.md
+++ b/docs/install_win.md
@@ -1,52 +1,3 @@
# Launching the **trains-server** Docker in Windows 10
-## **NOTE**: These instructions are deprecated. See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server) for up-to-date deployment instructions
-
-For Windows, we recommend launching our pre-built Docker image on a Linux virtual machine.
-However, you can launch **trains-server** on Windows 10 using Docker Desktop for Windows (see the Docker [System Requirements](https://docs.docker.com/docker-for-windows/install/#system-requirements)).
-
-To launch **trains-server** on Windows 10:
-
-1. Install the Docker Desktop for Windows application by either:
-
- * Following the [Install Docker Desktop on Windows](https://docs.docker.com/docker-for-windows/install/) instructions.
- * Running the Docker installation [wizard](https://hub.docker.com/?overlay=onboarding).
-
-1. Increase the memory allocation in Docker Desktop to `4GB`.
-
- 1. In your Windows notification area (system tray), right click the Docker icon.
-
- 1. Click *Settings*, *Advanced*, and then set the memory to at least `4096`.
-
- 1. Click *Apply*.
-
-1. Remove any previous installation of **trains-server**.
-
- **WARNING**: This clears all existing **Trains** databases.
-
- rmdir c:\opt\trains /s
-
-1. Create local directories for data and logs. Open PowerShell and execute the following commands:
-
- cd c:
- mkdir c:\opt\trains\data
- mkdir c:\opt\trains\logs
-
-1. Save the **trains-server** docker-compose YAML file.
-
- cd c:\opt\trains
- curl https://raw.githubusercontent.com/allegroai/trains-server/master/docker-compose-win10.yml -o docker-compose-win10.yml
-
-1. Run `docker-compose`. In PowerShell, execute the following commands:
-
- docker-compose -f docker-compose-win10.yml up
-
- Your server is now running on [http://localhost:8080](http://localhost:8080) and the following ports are available:
-
- * Web server on port `8080`
- * API server on port `8008`
- * File server on port `8081`
-
-## Next Step
-
-Configure the [Trains client for trains-server](https://github.com/allegroai/trains/blob/master/README.md#configuration).
\ No newline at end of file
+## See the [ClearML documentation](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_win) for up-to-date deployment instructions