clearml-server/docs/docker_setup.md

102 lines
5.0 KiB
Markdown
Raw Normal View History

# TRAINS-server: Using Docker Pre-Built Images
The pre-built Docker image for the **trains-server** is the quickest way to get started with your own **TRAINS** server.
You can also build the entire **trains-server** architecture using the code available in the [trains-server](https://github.com/allegroai/trains-server) repository.
**Note**: We tested this pre-built Docker image with Linux, only. For Windows users, we recommend installing the pre-built image on a Linux virtual machine.
## Prerequisites
* You must be logged in as a user with sudo privileges
* Use `bash` for all command-line instructions in this installation
## Setup Docker
### Step 1: Install Docker CE
You must first install Docker. For instructions about installing Docker, see [Supported platforms](https://docs.docker.com/install//#support) in the Docker documentation.
For example, to [install in Ubuntu](https://docs.docker.com/install/linux/docker-ce/ubuntu/) / Mint (x86_64/amd64):
```bash
sudo apt-get install -y apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
. /etc/os-release
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $UBUNTU_CODENAME stable"
sudo apt-get update
sudo apt-get install -y docker-ce
```
2019-08-15 20:56:19 +00:00
### Step 2: Set the Maximum Number of Memory Map Areas
Elastic requires that the `vm.max_map_count` kernel setting, which is the maximum number of memory map areas a process can use, is set to at least 262144.
For CentOS 7, Ubuntu 16.04, Mint 18.3, Ubuntu 18.04 and Mint 19.x, we tested the following commands to set `vm.max_map_count`:
```bash
echo "vm.max_map_count=262144" > /tmp/99-trains.conf
sudo mv /tmp/99-trains.conf /etc/sysctl.d/99-trains.conf
sudo sysctl -w vm.max_map_count=262144
```
For information about setting this parameter on other systems, see the [elastic](https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode) documentation.
2019-08-15 20:56:19 +00:00
### Step 3: Restart the Docker daemon
Restart the Docker daemon.
```bash
sudo service docker restart
```
2019-08-15 20:56:19 +00:00
### Step 4: Choose a Data Directory
Choose a directory on your system in which all data maintained by the **trains-server** is stored.
Create this directory, and set its owner and group to `uid` 1000. The data stored in this directory includes the database, uploaded files and logs.
For example, if your data directory is `/opt/trains`, then use the following command:
```bash
sudo mkdir -p /opt/trains/data/elastic
sudo mkdir -p /opt/trains/data/mongo/db
sudo mkdir -p /opt/trains/data/mongo/configdb
sudo mkdir -p /opt/trains/logs
sudo mkdir -p /opt/trains/data/fileserver
2019-10-07 11:03:08 +00:00
sudo mkdir -p /opt/trains/config
sudo chown -R 1000:1000 /opt/trains
```
2019-08-08 08:58:19 +00:00
## TRAINS-server: Manually Launching Docker Containers <a name="launch"></a>
You can manually launch the Docker containers using the following commands.
If your data directory is not `/opt/trains`, then in the five `docker run` commands below, you must replace all occurrences of `/opt/trains` with your data directory path.
1. Launch the **trains-elastic** Docker container.
2019-08-15 20:56:19 +00:00
sudo docker run -d --restart="always" --name="trains-elastic" -e "bootstrap.memory_lock=true" --ulimit memlock=-1:-1 -e "ES_JAVA_OPTS=-Xms2g -Xmx2g" -e "bootstrap.memory_lock=true" -e "cluster.name=trains" -e "discovery.zen.minimum_master_nodes=1" -e "node.name=trains" -e "script.inline=true" -e "script.update=true" -e "thread_pool.bulk.queue_size=2000" -e "thread_pool.search.queue_size=10000" -e "xpack.security.enabled=false" -e "xpack.monitoring.enabled=false" -e "cluster.routing.allocation.node_initial_primaries_recoveries=500" -e "node.ingest=true" -e "http.compression_level=7" -e "reindex.remote.whitelist=*.*" -e "script.painless.regex.enabled=true" --network="host" -v /opt/trains/data/elastic:/usr/share/elasticsearch/data docker.elastic.co/elasticsearch/elasticsearch:5.6.16
1. Launch the **trains-mongo** Docker container.
sudo docker run -d --restart="always" --name="trains-mongo" -v /opt/trains/data/mongo/db:/data/db -v /opt/trains/data/mongo/configdb:/data/configdb --network="host" mongo:3.6.5
1. Launch the **trains-fileserver** Docker container.
sudo docker run -d --restart="always" --name="trains-fileserver" --network="host" -v /opt/trains/logs:/var/log/trains -v /opt/trains/data/fileserver:/mnt/fileserver allegroai/trains:latest fileserver
1. Launch the **trains-apiserver** Docker container.
sudo docker run -d --restart="always" --name="trains-apiserver" --network="host" -v /opt/trains/logs:/var/log/trains -v /opt/trains/config:/opt/trains/config allegroai/trains:latest apiserver
1. Launch the **trains-webserver** Docker container.
sudo docker run -d --restart="always" --name="trains-webserver" -p 8080:80 allegroai/trains:latest webserver
1. Your server is now running on [http://localhost:8080](http://localhost:8080) and the following ports are available:
* API server on port `8008`
* Web server on port `8080`
* File server on port `8081`