2.7 KiB
title |
---|
Matplotlib |
:::tip If you are not already using ClearML, see Getting Started for setup instructions. :::
Matplotlib is a Python library for data visualization. ClearML automatically captures plots
and images created with matplotlib
.
All you have to do is add two lines of code to your script:
from clearml import Task
task = Task.init(task_name="<task_name>", project_name="<project_name>")
This will create a ClearML Task that captures:
- Git details
- Source code and uncommitted changes
- Installed packages
- Matplotlib visualizations
- And more
View captured Matplotlib plots and images in the WebApp, in the experiment's Plots and Debug Samples tabs respectively.
Automatic Logging Control
By default, when ClearML is integrated into your script, it captures all of your matplotlib visualizations. But, you may want to have more control over what your experiment logs.
To control a task's framework logging, use the auto_connect_frameworks
parameter of Task.init()
.
Completely disable all automatic logging by setting the parameter to False
. For finer grained control of logged
frameworks, input a dictionary, with framework-boolean pairs.
For example:
auto_connect_frameworks={
'matplotlib': False, 'tensorflow': False, 'tensorboard': False, 'pytorch': True,
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'catboost': True
}
Manual Logging
To augment its automatic logging, ClearML also provides an explicit logging interface.
Use Logger.report_matplotlib_figure()
to explicitly log
a matplotlib figure, and specify its title and series names, and iteration number:
logger = task.get_logger()
area = (40 * np.random.rand(N))**2
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
logger.report_matplotlib_figure(title="My Plot Title", series="My Plot Series", iteration=10, figure=plt)
plt.show()
The logged figure is displayed in the experiment's Plots tab.
Matplotlib figures can be logged as images by passing report_image=True
to Logger.report_matplotlib_figure()
.
View the images in the experiment's DEBUG SAMPLES tab.
See Manual Matplotlib Reporting example.