--- title: OpenMMLab --- :::tip If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md) for setup instructions. ::: [OpenMMLab](https://github.com/open-mmlab) is a computer vision framework. You can integrate ClearML into your code using the `mmcv` package's [`ClearMLLoggerHook`](https://mmcv.readthedocs.io/en/master/_modules/mmcv/runner/hooks/logger/clearml.html) class. This class is used to create a ClearML Task and to automatically log metrics. For example, the following code sets up the configuration for logging metrics periodically to ClearML, and then registers the ClearML hook to a [runner](https://mmcv.readthedocs.io/en/v1.3.8/runner.html?highlight=register_training_hooks#epochbasedrunner), which manages training in `mmcv`: ```python log_config = dict( interval=100, hooks=[ dict( type='ClearMLLoggerHook', init_kwargs=dict( project_name='examples', task_name='OpenMMLab cifar10', output_uri=True ) ), ] ) # register hooks to runner and those hooks will be invoked automatically runner.register_training_hooks( lr_config=lr_config, optimizer_config=optimizer_config, checkpoint_config=checkpoint_config, log_config=log_config # ClearMLLogger hook ) ``` The `init_kwargs` dictionary can include any parameter from [`Task.init()`](../references/sdk/task.md#taskinit). This creates a [ClearML Task](../fundamentals/task.md) `OpenMMLab cifar10` in the `examples` project. You can view the captured metrics in the experiment's **Scalars** tab in the [WebApp](../webapp/webapp_overview.md). ![OpenMMLab scalars](../img/itegration_openmmlab_scalars.png) See OpenMMLab code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/openmmlab/openmmlab_cifar10.py).