--- title: Model Reporting --- The [model_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_reporting.py) example demonstrates logging a model using the [OutputModel](../../references/sdk/model_outputmodel.md) class. The example does the following: * Creates a task named `Model reporting example` in the `examples` project. * Uses an OutputModel object to register a previously trained model and log its label enumeration. ## Initialization An OutputModel object is instantiated for the task. ```python from clearml import Task, OutputModel # Connecting ClearML with the current process, task = Task.init(project_name="examples", task_name="Model logging example") # Create output model and connect it to the task output_model = OutputModel(task=task) ``` ## Label Enumeration Set the model's label enumeration using [`OutputModel.update_labels()`](../../references/sdk/model_outputmodel.md#update_labels). ```python labels = {"background": 0, "cat": 1, "dog": 2} output_model.update_labels(labels) ``` ## Registering Models Register a previously trained model using [`OutputModel.update_weights()`](../../references/sdk/model_outputmodel.md#update_weights). The example code uses a model stored in S3. ```python # Manually log a model file, which will have the labels connected above output_model.update_weights(register_uri=model_url) ``` ## WebApp The model appears in the task's **ARTIFACTS** tab. ![Task artifacts](../../img/examples_model_logging_artifacts.png) Clicking on the model name takes you to the [model's page](../../webapp/webapp_model_viewing.md), where you can view the model's details and access the model. The model's **LABELS** tab displays its label enumeration. ![Model Labels tab](../../img/examples_model_logging_labels.png) ## Additional Example See [PyTorch Model Updating](../frameworks/pytorch/model_updating.md) for a more robust example, which trains a model, and then logs it with OutputModel.