--- title: Hyperparameters Reporting --- The [hyper_parameters.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/hyper_parameters.py) example script demonstrates: * **ClearML**'s automatic logging of `argparse` command line options and TensorFlow Definitions * Logging user-defined hyperparameters with a parameter dictionary and connecting the dictionary to a Task. Hyperparameters appear in the **web UI** in the experiment's page, under **CONFIGURATIONS** **>** **HYPER PARAMETERS**. Each type is in its own subsection. Parameters from older experiments are grouped together with the ``argparse`` command line options (in the **Args** subsection). When the script runs, it creates an experiment named `hyper-parameters example`, which is associated with the `examples` project. ## argparse command line options If a code uses argparse and initializes a Task, **ClearML** automatically logs the argparse arguments. parser = ArgumentParser() parser.add_argument('--argparser_int_value', help='integer value', type=int, default=1) parser.add_argument('--argparser_disabled', action='store_true', default=False, help='disables something') parser.add_argument('--argparser_str_value', help='string value', default='a string') args = parser.parse_args() Command line options appears in **HYPER PARAMETERS** **>** **Args**. ![image](../../img/examples_reporting_hyper_param_01.png) ## TensorFlow Definitions **ClearML** automatically logs TensorFlow Definitions, whether they are defined before or after the Task is initialized. flags.DEFINE_string('echo', None, 'Text to echo.') flags.DEFINE_string('another_str', 'My string', 'A string', module_name='test') task = Task.init(project_name='examples', task_name='hyper-parameters example') flags.DEFINE_integer('echo3', 3, 'Text to echo.') flags.DEFINE_string('echo5', '5', 'Text to echo.', module_name='test') TensorFlow Definitions appear in **HYPER PARAMETERS** **>** **TF_DEFINE**. ![image](../../img/examples_reporting_hyper_param_03.png) ## Parameter dictionaries Connect a parameter dictionary to a Task by calling the [Task.connect](../../references/sdk/task.md#connect) method, and **ClearML** logs the parameters. **ClearML** also tracks changes to the parameters. parameters = { 'list': [1, 2, 3], 'dict': {'a': 1, 'b': 2}, 'tuple': (1, 2, 3), 'int': 3, 'float': 2.2, 'string': 'my string', } parameters = task.connect(parameters) # adding new parameter after connect (will be logged as well) parameters['new_param'] = 'this is new' # changing the value of a parameter (new value will be stored instead of previous one) parameters['float'] = '9.9' Parameters from dictionaries connected to Tasks appear in **HYPER PARAMETERS** **>** **General**. ![image](../../img/examples_reporting_hyper_param_02.png)