--- title: Pipeline from Functions --- The [pipeline_from_functions.py](https://github.com/allegroai/clearml/blob/master/examples/pipeline/pipeline_from_functions.py) example script demonstrates the creation of a pipeline using the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md) class. This example creates a pipeline incorporating four tasks, each of which is created from a function: * `executing_pipeline`- Implements the pipeline controller which defines the pipeline structure and execution logic. * `step_one` - Downloads and processes data. * `step_two` - Further processes the data from `step_one`. * `step_three` - Uses the processed data from `step_two` to train a model. The step functions will be registered as pipeline steps when they are added to the pipeline controller. The pipeline execution logic is defined in the pipeline controller function. When the pipeline steps are executed, corresponding ClearML Tasks are created. For this reason, each function which makes up a pipeline step needs to be self-contained. Notice that all package imports inside the function will be automatically logged as required packages for the pipeline execution step. ## Pipeline Controller 1. Create the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md) object. ```python pipe = PipelineController( name='pipeline demo', project='examples', version='0.0.1', add_pipeline_tags=False, ) ``` 1. Set the default execution queue to be used. All the pipeline steps will be enqueued for execution in this queue (unless overridden by the `execution_queue` parameter of the `add_function_step` method). ```python pipe.set_default_execution_queue('default') ``` 1. Add a pipeline level parameter that can be referenced from any step in the pipeline (see `step_one` below). ```python pipe.add_parameter( name='url', description='url to pickle file', default='https://github.com/allegroai/events/raw/master/odsc20-east/generic/iris_dataset.pkl' ) ``` 1. Build the pipeline (see [`PipelineController.add_function_step`](../../references/sdk/automation_controller_pipelinecontroller.md#add_function_step) for complete reference). The first step in the pipeline uses the `step_one` function and uses as its input the pipeline level argument defined above. Its return object will be stored as an artifact under the name `data_frame`. ```python pipe.add_function_step( name='step_one', function=step_one, function_kwargs=dict(pickle_data_url='${pipeline.url}'), function_return=['data_frame'], cache_executed_step=True, ) ``` The second step in the pipeline uses the `step_two` function and uses as its input the first step’s output.This reference implicitly defines the pipeline structure, making `step_one` the parent step of `step_two`. Its return object will be stored as an artifact under the name `processed_data`. ```python pipe.add_function_step( name='step_two', # parents=['step_one'], # the pipeline will automatically detect the dependencies based on the kwargs inputs function=step_two, function_kwargs=dict(data_frame='${step_one.data_frame}'), function_return=['processed_data'], cache_executed_step=True, ) ``` The third step in the pipeline uses the `step_three` function and uses as its input the second step’s output. This reference implicitly defines the pipeline structure, making `step_two`the parent step of `step_three`. Its return object will be stored as an artifact under the name `model`: ```python pipe.add_function_step( name='step_three', # parents=['step_two'], # the pipeline will automatically detect the dependencies based on the kwargs inputs function=step_three, function_kwargs=dict(data='${step_two.processed_data}'), function_return=['model'], cache_executed_step=True, ) ``` 1. Run the pipeline. ```python pipe.start() ``` The pipeline will be launched remotely, through the `services` queue, unless otherwise specified. ## WebApp ### Pipeline Controller The pipeline controller’s **CONFIGURATION** page contains the pipeline structure and step definitions in its **Configuration Objects** section. The **Pipeline** configuration object contains the pipeline structure and execution parameters. ![Pipeline configuration](../../img/pipeline_function_config.png) An additional configuration object per pipeline step contains the step’s definitions and execution parameters. The pipeline controller’s **RESULTS > PLOTS** page provides summary details for the pipeline execution. The **Execution Flow** graphically summarizes the pipeline's execution. Hover over each step to view its details. ![Pipeline execution flow plot](../../img/pipeline_decorator_plot_1.png) The **Execution Details** table provides the pipeline execution details in table format. ![pipeline execution details plot](../../img/pipeline_function_plot.png) ### Pipeline Steps Each function step’s arguments are stored in their respective task’s **CONFIGURATION > HYPER PARAMETERS > kwargs**. ![Pipeline step configurations](../../img/pipeline_function_step_configuration.png) Values that were listed in the `return_values`parameter of the `PipelineDecorator.component` decorator are stored as artifacts in the relevant step's task. These artifacts can be viewed in the step task’s ARTIFACTS tab. ![Pipeline step artifacts](../../img/pipeline_decorator_step_artifacts.png)