--- title: Datasets and Dataset Versions --- ClearML Enterprise's **Datasets** and **Dataset versions** provide the internal data structure and functionality for the following purposes: * Connecting source data to the ClearML Enterprise platform * Using ClearML Enterprise's Git-like [Dataset versioning](#dataset-versioning) * Integrating the powerful features of [Dataviews](dataviews.md) with an experiment * [Annotating](webapp/webapp_datasets_frames.md#annotations) images and videos Datasets consist of versions with SingleFrames and/or FrameGroups. Each Dataset can contain multiple versions, which can have multiple children that inherit their parent's contents. Mask-labels are defined at the DatasetVersion level, and are applied to all masks in a DatasetVersion. ## Example Datasets ClearML Enterprise provides Example Datasets complete with frames, and ready for your experimentation. Find these example Datasets in the ClearML Enterprise WebApp (UI). They appear with an "Example" banner in the WebApp (UI). ## Usage ### Creating Datasets Use the [`Dataset.create`](../references/hyperdataset/hyperdataset.md#datasetcreate) method to create a Dataset. It will contain an empty version named `Current`. ```python from allegroai import Dataset myDataset = Dataset.create(dataset_name='myDataset') ``` Or, use the [`DatasetVersion.create_new_dataset`](../references/hyperdataset/hyperdatasetversion.md#datasetversioncreate_new_dataset) method. ```python from allegroai import DatasetVersion myDataset = DatasetVersion.create_new_dataset(dataset_name='myDataset Two') ``` When creating a dataset, you can put it into a project. In this case, the dataset will adhere to the [access rules](../webapp/settings/webapp_settings_access_rules.md) specified for its containing project. Use `dataset_project` parameter in `Dataset.create` or `DatasetVersion.create_new_dataset` to specify a project name. ```python myDataset_1 = Dataset.create(dataset_name="myDataset", dataset_project="myDataset Project") myDataset_2 = DatasetVersion.create_new_dataset( dataset_name="myDataset_2", dataset_project="myDatasetProject_2" ) ``` To raise a `ValueError` exception if the Dataset exists, specify the `raise_if_exists` parameters as `True`. * With `Dataset.create`: ```python try: myDataset = Dataset.create(dataset_name='myDataset One', raise_if_exists=True) except ValueError: print('Dataset exists.') ``` * Or with `DatasetVersion.create_new_dataset`: ```python try: myDataset = DatasetVersion.create_new_dataset(dataset_name='myDataset Two', raise_if_exists=True) except ValueError: print('Dataset exists.') ``` Additionally, create a Dataset with tags and a description. ```python myDataset = DatasetVersion.create_new_dataset( dataset_name='myDataset', tags=['One Tag', 'Another Tag', 'And one more tag'], description='some description text' ) ``` ### Accessing Current Dataset To get the current Dataset, use the [`DatasetVersion.get_current`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_current) method. ```python myDataset = DatasetVersion.get_current(dataset_name='myDataset') ``` ### Deleting Datasets Use the [`Dataset.delete`](../references/hyperdataset/hyperdataset.md#datasetdelete) class method to delete a Dataset: * Delete an empty Dataset (no versions): ```python Dataset.delete(dataset_name='MyDataset', delete_all_versions=False, force=False) ``` * Delete a Dataset containing only versions whose status is *Draft*: ```python Dataset.delete(dataset_name='MyDataset', delete_all_versions=True, force=False) ``` * Delete a Dataset even if it contains versions whose status is *Published*: ```python Dataset.delete(dataset_name='MyDataset', delete_all_versions=True, force=True) ``` * Delete a Dataset and the sources associated with its deleted frames: ```python Dataset.delete( dataset_name='MyDataset', delete_all_versions=True, force=True, delete_sources=True ) ``` This supports deleting sources located in AWS S3, GCP, and Azure Storage (not local storage). The `delete_sources` parameter is ignored if `delete_all_versions` is `False`. You can view the deletion process' progress by passing `show_progress=True` (`tqdm` required). ### Tagging Datasets Tags can be added to datasets, allowing to easily identify and group experiments. Add tags to a dataset: ```python MyDataset.add_tags(["coco", "dogs"]) ``` Remove tags from a dataset: ```python MyDataset.remove_tags(["dogs"]) ``` ## Dataset Versioning Dataset versioning refers to the group of ClearML Enterprise SDK and WebApp (UI) features for creating, modifying, and deleting Dataset versions. ClearML Enterprise supports simple and advanced Dataset versioning paradigms. A **simple version structure** consists of a single evolving version, with historic static snapshots. Continuously push your changes to your single dataset version, and take a snapshot to record the content of your dataset at a specific point in time. You can, alternatively, employ any **advanced structure**, where each version evolves in parallel, and you control which versions are locked for further changes and which can be modified. See details [below](#dataset-version-structure). ## Dataset Version State Dataset versions can have either *Draft* or *Published* state. A *Draft* version is editable, so frames can be added to and deleted and/or modified. A *Published* version is read-only, which ensures reproducible experiments and preserves the Dataset version contents. Child versions can only be created from *Published* versions, as they inherit their predecessor version contents. ## Dataset Version Structure To implement a simple version structure, where the dataset is ever evolving, with a linear set of historic snapshots, a parent version can have one and only one child, with the last child in the Dataset versions tree in *Draft* state. Different version structures, such as where at least one parent has more than one child, or the single last child in the Dataset versions tree is *Published* are considered advanced version structures. For details about programmatically implementing simple and advanced version structures, see [Creating Snapshots](#creating-snapshots) and [Creating Child Versions](#creating-child-versions) respectively below. ## DatasetVersion Usage Manage Dataset versioning using the DatasetVersion class in the ClearML Enterprise SDK. ### Creating Snapshots If the Dataset contains only one version whose status is *Draft*, snapshots of the current version can be created. When creating a snapshot, the current version becomes the snapshot (it keeps the same version ID), and the newly created version (with its new version ID) becomes the current version. To create a snapshot, use the `DatasetVersion.create_snapshot` method. #### Snapshot Naming In the simple version structure, ClearML Enterprise supports two methods for snapshot naming: * **Timestamp naming** - If only the Dataset name or ID is provided, the snapshot is named `snapshot` with a timestamp appended. The timestamp format is ISO 8601 (`YYYY-MM-DDTHH:mm:ss.SSSSSS`). For example, `snapshot 2020-03-26T16:55:38.441671`. **Example:** ```python from allegroai import DatasetVersion myDataset = DatasetVersion.create_snapshot(dataset_name='MyDataset') ``` After the statement above runs, the previous current version keeps its existing version ID, and it becomes a snapshot named `snapshot` with a timestamp appended. The newly created version with a new version ID becomes the current version, and its name is `Current`. * **User-specified snapshot naming** - If the `publish_name` parameter is provided, it will be the name of the snapshot name. **Example:** ```python myDataset = DatasetVersion.create_snapshot(dataset_name='MyDataset', publish_name='NewSnapshotName') ``` After the above statement runs, the previous current version keeps its existing version ID and becomes a snapshot named `NewSnapshotName`. The newly created version (with a new version ID) becomes the current version, and its name is `Current`. #### Current Version Naming In the simple version structure, ClearML Enterprise supports two methods for current version naming: * **Default naming** - If the `child_name` parameter is not provided, `Current` is the current version name. * **User-specified current version naming** - If the `child_name` parameter is provided, that child name becomes the current version name. For example, after the following statement runs, the previous current version keeps its existing version ID and becomes a snapshot named `snapshot` with the timestamp appended. The newly created version (with a new version ID) is the current version, and its name is `NewCurrentVersionName`. ```python myDataset = DatasetVersion.create_snapshot( dataset_name='MyDataset', child_name='NewCurrentVersionName' ) ``` #### Adding Metadata and Comments Add a metadata dictionary and/or comment to a snapshot. For example: ```python myDataset = DatasetVersion.create_snapshot( dataset_name='MyDataset', child_metadata={'abc':'1234','def':'5678'}, child_comment='some text comment' ) ``` ### Creating Child Versions Create a new version from any version whose status is *Published*. To create a new version, call the [`DatasetVersion.create_version`](../references/hyperdataset/hyperdataset.md#datasetversioncreate_version) method, and provide: * Either the Dataset name or ID * The parent version name or ID from which the child inherits frames * The new version's name. For example, create a new version named `NewChildVersion` from the existing version `PublishedVersion`, where the new version inherits the frames of the existing version. If `NewChildVersion` already exists, it is returned. ```python myVersion = DatasetVersion.create_version( dataset_name='MyDataset', parent_version_names=['PublishedVersion'], version_name='NewChildVersion' ) ``` To raise a ValueError exception if `NewChildVersion` exists, set `raise_if_exists` to `True`. ```python myVersion = DatasetVersion.create_version( dataset_name='MyDataset', parent_version_names=['PublishedVersion'], version_name='NewChildVersion', raise_if_exists=True ) ``` ### Creating Root-level Parent Versions Create a new version at the root-level. This is a version without a parent, and it contains no frames. ```python myDataset = DatasetVersion.create_version( dataset_name='MyDataset', version_name='NewRootVersion' ) ``` ### Getting Versions To get a version or versions, use the [`DatasetVersion.get_version`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_version) and [`DatasetVersion.get_versions`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_versions) methods, respectively. **Getting a list of all versions** ```python myDatasetversion = DatasetVersion.get_versions(dataset_name='MyDataset') ``` **Getting a list of all _published_ versions** ```python myDatasetversion = DatasetVersion.get_versions( dataset_name='MyDataset', only_published=True ) ``` **Getting a list of all _drafts_ versions** ```python myDatasetversion = DatasetVersion.get_versions( dataset_name='MyDataset', only_draft=True ) ``` **Getting the current version** If more than one version exists, ClearML Enterprise outputs a warning. ```python myDatasetversion = DatasetVersion.get_version(dataset_name='MyDataset') ``` **Getting a specific version** ```python myDatasetversion = DatasetVersion.get_version( dataset_name='MyDataset', version_name='VersionName' ) ``` ### Deleting Versions Delete versions which are status *Draft* using the [`Dataset.delete_version`](../references/hyperdataset/hyperdataset.md#delete_version) method. ```python from allegroai import Dataset myDataset = Dataset.get(dataset_name='MyDataset') myDataset.delete_version(version_name='VersionToDelete') ``` ### Publishing Versions Publish (make read-only) versions which are status *Draft* using the [`DatasetVersion.publish_version`](../references/hyperdataset/hyperdatasetversion.md#publish_version) method. This includes the current version, if the Dataset is in the simple version structure. ```python myVersion = DatasetVersion.get_version( dataset_name='MyDataset', version_name='VersionToPublish' ) myVersion.publish_version() ``` ### Managing Version Mask-labels #### Setting Version Mask-label Mapping In order to visualize masks in a dataset version, the mask values need to be mapped to their labels. Mask-label mapping is stored in a version's metadata. To define the DatasetVersion level mask-label mapping, use the [`DatasetVersion.set_masks_labels`](../references/hyperdataset/hyperdatasetversion.md#set_masks_labels) method, and input a dictionary of RGB-value tuple keys and label-list values. ```python from allegroai import DatasetVersion # Getting a version myDatasetversion = DatasetVersion.get_version(dataset_name='MyDataset', version_name='VersionName') # Mapping out colors and labels of masks myDatasetversion.set_masks_labels( { (0, 0, 0): ["background"], (1, 1, 1): ["person", "sitting"], (2, 2, 2): ["cat"], } ) ``` #### Accessing Version Mask-label Mapping The mask values and labels are stored as a property in a dataset version's metadata. ```python mapping = myDatasetversion.get_metadata()['mask_labels'] print(mapping) ``` This should return a dictionary of the version's masks and labels, which should look something like this: ```python {'_all_': [{'value': [0, 0, 0], 'labels': ['background']}, {'value': [1, 1, 1], 'labels': ['person', 'sitting']}, {'value': [2, 2, 2], 'labels': ['cat']}]} ```