--- title: Annotations --- With ClearML Enterprise, annotations can be applied to video and image frames. [Frames](single_frames.md) support two types of annotations: **Frame objects** and **Frame labels**. Annotation Tasks can be used to efficiently organize the annotation of frames in Hyper-Dataset versions (see [Annotation Tasks](webapp/webapp_annotator.md)). For information about how to view, create, and manage annotations using the WebApp, see [Annotating Images and Videos](webapp/webapp_annotator.md#annotating-images-and-video). ## Frame Objects Frame objects are labeled Regions of Interest (ROIs), which can be bounded by polygons (including rectangles), ellipses, or key points. These ROIs are useful for object detection, classification, or semantic segmentation. Frame objects can include ROI labels, confidence levels, and masks for semantic segmentation. In ClearML Enterprise, one or more labels and sources dictionaries can be associated with an ROI (although multiple source ROIs are not frequently used). ## Frame Labels Frame labels are applied to an entire frame, not a region in a frame. ## Usage ### Adding a Frame Object To add a frame object annotation to a SingleFrame, use [`SingleFrame.add_annotation()`](../references/hyperdataset/singleframe.md#add_annotation): ```python # a bounding box labeled "test" at x=10,y=10 with width of 30px and height of 20px frame.add_annotation(box2d_xywh=(10, 10, 30, 20), labels=['test']) ``` The `box2d_xywh` argument specifies the coordinates of the annotation's bounding box, and the `labels` argument specifies a list of labels for the annotation. Enter the annotation's boundaries in one of the following ways: * `poly2d_xy` - A list of floating points (x,y) to create a single polygon, or a list of floating points lists for a complex polygon. * `ellipse2d_xyrrt` - A List consisting of cx, cy, rx, ry, and theta for an ellipse. * And more! See [`SingleFrame.add_annotation`](../references/hyperdataset/singleframe.md#add_annotation) for further options. ### Adding a Frame Label Adding a frame label is similar to creating a frame object, except that coordinates don't need to be specified, since the whole frame is being referenced. Use [`SingleFrame.add_annotation()`](../references/hyperdataset/singleframe.md#add_annotation), but specify only the `labels` parameter: ```python # labels for the whole frame frame.add_annotation(labels=['frame level label one','frame level label two']) ``` ### Adding a Global Annotation Add a global annotation that will apply to all frames in a FrameGroup. Use [`FrameGroup.add_global_annotation()`](../references/hyperdataset/framegroup.md#add_global_annotation) and specify the [Annotation](../references/hyperdataset/annotation.md) object to add to each frame: ```python annotation = ImageAnnotation(labels=["cityscape"], confidence=1.0000,) frame_group.add_global_annotation(annotation=annotation) ```