--- title: Explicit Reporting --- In this tutorial, learn how to extend **ClearML** automagical capturing of inputs and outputs with explicit reporting. In this example, we will add the following to the [pytorch_mnist.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py) example script from ClearML's GitHub repo: * Setting an output destination for model checkpoints (snapshots). * Explicitly logging a scalar, other (non-scalar) data, and logging text. * Registering an artifact, which is uploaded to **ClearML Server**, and **ClearML** logs changes to it. * Uploading an artifact, which is uploaded, but changes to it are not logged. ## Prerequisites * The [clearml](https://github.com/allegroai/clearml) repository is cloned. * The `clearml` package is installed. ## Before starting Make a copy of `pytorch_mnist.py` in order to add explicit reporting to it. * In the local **ClearML** repository, `example` directory. cp pytorch_mnist.py pytorch_mnist_tutorial.py ## Step 1: Setting an output destination for model checkpoints Specify a default output location, which is where model checkpoints (snapshots) and artifacts will be stored when the experiment runs. Some possible destinations include: * Local destination * Shared folder * Cloud storage: * S3 EC2 * Google Cloud Storage * Azure Storage. Specify the output location in the `output_uri` parameter of the [Task.init](../../references/sdk/task.md#taskinit) method. In this tutorial, we specify a local folder destination. In `pytorch_mnist_tutorial.py`, change the code from: task = Task.init(project_name='examples', task_name='pytorch mnist train') to: model_snapshots_path = '/mnt/clearml' if not os.path.exists(model_snapshots_path): os.makedirs(model_snapshots_path) task = Task.init(project_name='examples', task_name='extending automagical ClearML example', output_uri=model_snapshots_path) When the script runs, **ClearML** creates the following directory structure: + - | +-- | +-- . | +-- models | +-- artifacts and puts the model checkpoints (snapshots) and artifacts in that folder. For example, if the Task ID is `9ed78536b91a44fbb3cc7a006128c1b0`, then the directory structure will be: + - model_snapshots | +-- examples | +-- extending automagical ClearML example.9ed78536b91a44fbb3cc7a006128c1b0 | +-- models | +-- artifacts ## Step 2: Logger class reporting methods In addition to **ClearML** automagical logging, the **ClearML** Python package contains methods for explicit reporting of plots, log text, media, and tables. These methods include: * [Logger.report_histogram](../../references/sdk/logger.md#report_histogram) * [Logger.report_confusion_matrix](../../references/sdk/logger.md#report_confusion_matrix) * [Logger.report_line_plot](../../references/sdk/logger.md#report_line_plot) * [Logger.report_scatter2d](../../references/sdk/logger.md#report_scatter2d) * [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d) * [Logger.report_surface](../../references/sdk/logger.md#report_surface) (surface diagrams) * [Logger.report_image](../../references/sdk/logger.md#report_image) - Report an image and upload its contents. * [Logger.report_table](../../references/sdk/logger.md#report_table) - Report a table as a Pandas DataFrame, CSV file, or URL for a CSV file. * [Logger.report_media](../../references/sdk/logger.md#report_media) - Report media including images, audio, and video. * [Logger.get_default_upload_destination](../../references/sdk/logger.md#get_default_upload_destination) - Retrieve the destination that is set for uploaded media. ### Get a logger First, create a logger for the Task using the [Task.get_logger](../../references/sdk/task.md#get_logger) method. logger = task.get_logger ### Plot scalar metrics Add scalar metrics using the [Logger.report_scalar](../../references/sdk/logger.md#report_scalar) method to report loss metrics. def train(args, model, device, train_loader, optimizer, epoch): save_loss = [] model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() save_loss.append(loss) optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # Add manual scalar reporting for loss metrics logger.report_scalar(title='Scalar example {} - epoch'.format(epoch), series='Loss', value=loss.item(), iteration=batch_idx) ### Plot other (not scalar) data The script contains a function named `test`, which determines loss and correct for the trained model. We add a histogram and confusion matrix to log them. def test(args, model, device, test_loader): save_test_loss = [] save_correct = [] model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, reduction='sum').item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() save_test_loss.append(test_loss) save_correct.append(correct) test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) logger.report_histogram(title='Histogram example', series='correct', iteration=1, values=save_correct, xaxis='Test', yaxis='Correct') # Manually report test loss and correct as a confusion matrix matrix = np.array([save_test_loss, save_correct]) logger.report_confusion_matrix(title='Confusion matrix example', series='Test loss / correct', matrix=matrix, iteration=1) ### Log text Extend **ClearML** by explicitly logging text, including errors, warnings, and debugging statements. We use the [Logger.report_text](../../references/sdk/logger.md#report_text) method and its argument `level` to report a debugging message. logger.report_text('The default output destination for model snapshots and artifacts is: {}'.format(model_snapshots_path ), level=logging.DEBUG) ## Step 3: Registering artifacts Registering an artifact uploads it to **ClearML Server**, and if it changes, the change is logged in **ClearML Server**. Currently, **ClearML** supports Pandas DataFrames as registered artifacts. ### Register the artifact In the tutorial script, `test` function, we can assign the test loss and correct data to a Pandas DataFrame object and register that Pandas DataFrame using the [Task.register_artifact](../../references/sdk/task.md#register_artifact) method. # Create the Pandas DataFrame test_loss_correct = { 'test lost': save_test_loss, 'correct': save_correct } df = pd.DataFrame(test_loss_correct, columns=['test lost','correct']) # Register the test loss and correct as a Pandas DataFrame artifact task.register_artifact('Test_Loss_Correct', df, metadata={'metadata string': 'apple', 'metadata int': 100, 'metadata dict': {'dict string': 'pear', 'dict int': 200}}) ### Reference the registered artifact Once an artifact is registered, it can be referenced and utilized in the Python experiment script. In the tutorial script, we add [Task.current_task](../../references/sdk/task.md#taskcurrent_task) and [Task.get_registered_artifacts](../../references/sdk/task.md#get_registered_artifacts) methods to take a sample. # Once the artifact is registered, we can get it and work with it. Here, we sample it. sample = Task.current_task().get_registered_artifacts()['Test_Loss_Correct'].sample(frac=0.5, replace=True, random_state=1) ## Step 4: Uploading artifacts Artifact can be uploaded to the **ClearML Server**, but changes are not logged. Supported artifacts include: * Pandas DataFrames * Files of any type, including image files * Folders - stored as ZIP files * Images - stored as PNG files * Dictionaries - stored as JSONs * Numpy arrays - stored as NPZ files In the tutorial script, we upload the loss data as an artifact using the [Task.upload_artifact](../../references/sdk/task.md#upload_artifact) method with metadata specified in the `metadata` parameter. # Upload test loss as an artifact. Here, the artifact is numpy array task.upload_artifact('Predictions',artifact_object=np.array(save_test_loss), metadata={'metadata string': 'banana', 'metadata integer': 300, 'metadata dictionary': {'dict string': 'orange', 'dict int': 400}}) ## Additional information After extending the Python experiment script, run it and view the results in the **ClearML Web UI**. python pytorch_mnist_tutorial.py **To view the experiment results, do the following:** 1. In the **ClearML Web UI**, on the Projects page, click the examples project. 1. In the experiments table, click the **Extending automagical ClearML example** experiment. 1. In the **ARTIFACTS** tab, **DATA AUDIT** section, click **Test_Loss_Correct**. The registered Pandas DataFrame appears, including the file path, size, hash, metadata, and a preview. 1. In the **OTHER** section, click **Loss**. The uploaded numpy array appears, including its related information. 1. Click the **RESULTS** tab. 1. Click the **CONSOLE** sub-tab, and see the debugging message showing the Pandas DataFrame sample. 1. Click the **SCALARS** sub-tab, and see the scalar plots for epoch logging loss. 1. Click the **PLOTS** sub-tab, and see the confusion matrix and histogram. ## Next Steps * See the [User Interface](../../webapp/webapp_overview.md) section to learn about its features. * See the [ClearML Python Package Reference](../../clearml_sdk.md) to learn about all the available classes and methods.