diff --git a/docs/guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt.md b/docs/guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt.md index 2a710360..7e67a4b9 100644 --- a/docs/guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt.md +++ b/docs/guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt.md @@ -35,6 +35,7 @@ The example code attempts to import `OptimizerOptuna` for the search strategy. I installed, it attempts to import `OptimizerBOHB`. If `clearml.automation.hpbandster` is not installed, it uses the `RandomSearch` for the search strategy. +```python aSearchStrategy = None if not aSearchStrategy: @@ -56,12 +57,14 @@ the `RandomSearch` for the search strategy. 'Apologies, it seems you do not have \'optuna\' or \'hpbandster\' installed, ' 'we will be using RandomSearch strategy instead') aSearchStrategy = RandomSearch +``` ## Define a Callback When the optimization starts, a callback is provided that returns the best performing set of hyperparameters. In the script, the `job_complete_callback` function returns the ID of `top_performance_job_id`. +```python def job_complete_callback( job_id, # type: str objective_value, # type: float @@ -72,6 +75,7 @@ the `job_complete_callback` function returns the ID of `top_performance_job_id`. print('Job completed!', job_id, objective_value, objective_iteration, job_parameters) if job_id == top_performance_job_id: print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value)) +``` ## Initialize the Optimization Task @@ -83,11 +87,13 @@ We set the Task type to optimizer, and create a new experiment (and Task object) When the code runs, it creates an experiment named **Automatic Hyper-Parameter Optimization** that is associated with the project **Hyper-Parameter Optimization**, which can be seen in the **ClearML Web UI**. + ```python # Connecting CLEARML task = Task.init(project_name='Hyper-Parameter Optimization', task_name='Automatic Hyper-Parameter Optimization', task_type=Task.TaskTypes.optimizer, reuse_last_task_id=False) +``` ## Set Up the Arguments @@ -100,6 +106,7 @@ least once so that it is stored in **ClearML Server**, and, therefore, can be cl Since the arguments dictionary is connected to the Task, after the code runs once, the `template_task_id` can be changed to optimize a different experiment, see [tuning experiments](../../../webapp/webapp_exp_tuning.md). +```python # experiment template to optimize in the hyper-parameter optimization args = { 'template_task_id': None, @@ -111,46 +118,53 @@ to optimize a different experiment, see [tuning experiments](../../../webapp/web if not args['template_task_id']: args['template_task_id'] = Task.get_task( project_name='examples', task_name='Keras HP optimization base').id +``` -## Instantiate the Optimizer Object +## Creating the Optimizer Object -Instantiate an [automation.optimization.HyperParameterOptimizer](../../../references/sdk/hpo_optimization_hyperparameteroptimizer.md) +Initialize an [automation.optimization.HyperParameterOptimizer](../../../references/sdk/hpo_optimization_hyperparameteroptimizer.md) object, setting the optimization parameters, beginning with the ID of the experiment to optimize. +```python an_optimizer = HyperParameterOptimizer( # This is the experiment we want to optimize base_task_id=args['template_task_id'], +``` Set the hyperparameter ranges to sample, instantiating them as **ClearML** automation objects using [automation.parameters.UniformIntegerParameterRange](../../../references/sdk/hpo_parameters_uniformintegerparameterrange.md) and [automation.parameters.DiscreteParameterRange](../../../references/sdk/hpo_parameters_discreteparameterrange.md). - + +```python hyper_parameters=[ UniformIntegerParameterRange('layer_1', min_value=128, max_value=512, step_size=128), UniformIntegerParameterRange('layer_2', min_value=128, max_value=512, step_size=128), DiscreteParameterRange('batch_size', values=[96, 128, 160]), DiscreteParameterRange('epochs', values=[30]), ], +``` Set the metric to optimize and the optimization objective. +```python objective_metric_title='val_acc', objective_metric_series='val_acc', objective_metric_sign='max', +``` Set the number of concurrent Tasks. - +```python max_number_of_concurrent_tasks=2, - +``` Set the optimization strategy, see [Set the search strategy for optimization](#set-the-search-strategy-for-optimization). - +```python optimizer_class=aSearchStrategy, - +``` Specify the queue to use for remote execution. This is overridden if the optimizer runs as a service. - +```python execution_queue='1xGPU', - +``` Specify the remaining parameters, including the time limit per Task (minutes), period for checking the optimization (minutes), maximum number of jobs to launch, minimum and maximum number of iterations for each Task. - +```python # Optional: Limit the execution time of a single experiment, in minutes. # (this is optional, and if using OptimizerBOHB, it is ignored) time_limit_per_job=10., @@ -167,6 +181,10 @@ Specify the remaining parameters, including the time limit per Task (minutes), p # Set the maximum number of iterations for an experiment to execute # (This is optional, unless using OptimizerBOHB where this is a must) max_iteration_per_job=30, + +) # done creating HyperParameterOptimizer + +``` @@ -176,22 +194,26 @@ The optimization can run as a service, if the `run_as_service` argument is set t running as a service, see [ClearML Agent services container](../../../clearml_agent.md#services-mode) on "Concepts and Architecture" page. +```python # if we are running as a service, just enqueue ourselves into the services queue and let it run the optimization if args['run_as_service']: # if this code is executed by `clearml-agent` the function call does nothing. # if executed locally, the local process will be terminated, and a remote copy will be executed instead task.execute_remotely(queue_name='services', exit_process=True) +``` ## Optimize The optimizer is ready. Set the report period and start it, providing the callback method to report the best performance. +```python # report every 12 seconds, this is way too often, but we are testing here J an_optimizer.set_report_period(0.2) # start the optimization process, callback function to be called every time an experiment is completed # this function returns immediately an_optimizer.start(job_complete_callback=job_complete_callback) # set the time limit for the optimization process (2 hours) +``` Now that it is running: 1. Set a time limit for optimization @@ -200,7 +222,7 @@ Now that it is running: 1. Print the best performance 1. Stop the optimizer. - +```python # set the time limit for the optimization process (2 hours) an_optimizer.set_time_limit(in_minutes=90.0) # wait until process is done (notice we are controlling the optimization process in the background) @@ -211,4 +233,5 @@ Now that it is running: # make sure background optimization stopped an_optimizer.stop() - print('We are done, good bye') \ No newline at end of file + print('We are done, good bye') +```